Network Bandwidth Measurements and Ratio Analysis with the HPC Challenge Benchmark Suite (HPCC)

  • Rolf Rabenseifner
  • Sunil R. Tiyyagura
  • Matthias Müller
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3666)


The HPC Challenge benchmark suite (HPCC) was released to analyze the performance of high-performance computing architectures using several kernels to measure different memory and hardware access patterns comprising latency based measurements, memory streaming, inter-process communication and floating point computation. HPCC defines a set of benchmarks augmenting the High Performance Linpack used in the Top500 list. This paper describes the inter-process communication benchmarks of this suite. Based on the effective bandwidth benchmark, a special parallel random and natural ring communication benchmark has been developed for HPCC. Ping-Pong benchmarks on a set of process pairs can be used for further characterization of a system. This paper analyzes first results achieved with HPCC. The focus of this paper is on the balance between computational speed, memory bandwidth, and inter-node communication.


HPCC network bandwidth effective bandwidth Linpack HPL STREAM DGEMM PTRANS FFTE latency benchmarking 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    John McCalpin. STREAM: Sustainable Memory Bandwidth in High Performance Computing,
  2. 2.
    Dongarra, J.J., Croz, J.D., Hammarling, S., Duff, I.S.: A set of level 3 basic linear algebra subprograms. ACM Transactions on Mathematical Software (TOMS) 16(1), 1–17 (1990)zbMATHCrossRefGoogle Scholar
  3. 3.
    Dongarra, J.J., Croz, J.D., Hammarling, S., Duff, I.S.: Algorithm 679; a set of level 3 basic linear algebra subprograms: model implementation and test programs. ACM Transactions on Mathematical Software (TOMS) 16(1), 18–28 (1990)zbMATHCrossRefGoogle Scholar
  4. 4.
    Dongarra, J.J., Luszczek, P., Petitet, A.: The LINPACK benchmark: Past, present, and future. Concurrency nd Computation: Practice and Experience 15, 1–18 (2003)CrossRefGoogle Scholar
  5. 5.
    Dongarra, J., Luszczek, P.: Introduction to the HPCChallenge Benchmark Suite. Computer Science Department Tech. Report 2005, UT-CS-05-544 (2005),
  6. 6.
    Panel on HPC Challenge Benchmarks: An Expanded View of High End Computers. SC 2004, November 12 (2004),
  7. 7.
    Koniges, A.E., Rabenseifner, R., Solchenbach, K.: Benchmark Design for Characterization of Balanced High-Performance Architectures. In: Proceedings of the 15th International Parallel and Distributed Processing Symposium (IPDPS 2001), Workshop on Massively Parallel Processing (WMPP), San Francisco, USA, April 23-27, vol. 3. IEEE Computer Society Press, Los Alamitos (2001), Google Scholar
  8. 8.
    Parallel Kernels and Benchmarks (PARKBENCH),
  9. 9.
    Rabenseifner, R., Koniges, A.E.: Effective Communication and File-I/O Bandwidth Benchmarks. In: Dongarra, J., Cotronis, Y. (eds.) Recent Advances in Parallel Virtual Machine and Message Passing Interface, proceedings of the 8th European PVM/MPI Users’ Group Meeting, EuroPVM/MPI 2001, Santorini, Greece, September 23-26, pp. 24–35 (2001)Google Scholar
  10. 10.
    Rabenseifner, R.: Hybrid Parallel Programming on HPC Platforms. In: Proceedings of the Fifth European Workshop on OpenMP, EWOMP 2003, Aachen, Germany, September 22-26, pp. 185–194 (2003)Google Scholar
  11. 11.
    Takahashi, D., Kanada, Y.: High-Performance Radix-2, 3 and 5 Parallel 1-D Complex FFT Algorithms for Distributed-Memory Parallel Computers. Journal of Supercomputing 15(2), 207–228 (2000)zbMATHCrossRefGoogle Scholar
  12. 12.
    Wichmann, N.: Cray and HPCC: Benchmark Developments and Results from Past Year. In: Proceedings of CUG 2005, Albuquerque, NM, USA, May 16-19 (2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Rolf Rabenseifner
    • 1
  • Sunil R. Tiyyagura
    • 1
  • Matthias Müller
    • 1
  1. 1.High-Performance Computing-Center (HLRS)University of StuttgartStuttgartGermany

Personalised recommendations