Advertisement

MGF: A Grid-Enabled MPI Library with a Delegation Mechanism to Improve Collective Operations

  • F. Gregoretti
  • G. Laccetti
  • A. Murli
  • G. Oliva
  • U. Scafuri
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3666)

Abstract

The success of Grid technologies depends on the ability of libraries and tools to hide the heterogeneous complexity of Grid systems. MPI-based programming libraries can make this environment more accessible to developers with parallel programming skills. In this paper we present MGF, an MPI library which extends the existing MPICH-G2. MGF aims are: to allow parallel MPI applications to be executed on Grids without source code modifications; to give programmers a detailed view of the execution system network topology; to use the most efficient channel available for point-to-point communications and finally, to improve collective operations efficiency introducing a delegation mechanism.

Keywords

MPI message passing collective operations Grid computing MPICH-G2 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Foster, I., Kesselman, C.: Computational grids. In: Foster, I., Kesselman, C. (eds.) The Grid: Blueprint for a New Computing Infrastructure, pp. 15–51. Morgan Kaufmann, San Francisco (1998)Google Scholar
  2. 2.
    Karonis, N.T., de Supinski, B.R., Foster, I., Gropp, W., Lusk, E., Bresnahan, J.: Exploiting hierarchy in parallel computer networks to optimize collective operation performance. In: Proceedings of the 14th International Symposium on Parallel and Distributed Processing, p. 377. IEEE Computer Society, Los Alamitos (2000)Google Scholar
  3. 3.
    Gabriel, E., Resch, M., Beisel, T., Keller, R.: Distributed computing in a heterogeneous computing environment. In: Proceedings of the 5th European PVM/MPI Users’ Group Meeting on Recent Advances in Parallel Virtual Machine and Message Passing Interface, pp. 180–187. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  4. 4.
    Laforenza, D.: Grid programming: some indications where we are headed. Parallel Comput. 28, 1733–1752 (2002)zbMATHCrossRefGoogle Scholar
  5. 5.
    Karonis, N.T., Toonen, B., Foster, I.: Mpich-g2: a grid-enabled implementation of the message passing interface. J. Parallel Distrib. Comput. 63, 551–563 (2003)zbMATHCrossRefGoogle Scholar
  6. 6.
    Foster, I., Kesselman, C., Tsudik, G., Tuecke, S.: A security architecture for computational grids. In: Proceedings of the 5th ACM conference on Computer and communications security, pp. 83–92. ACM Press, New York (1998)CrossRefGoogle Scholar
  7. 7.
    Czajkowski, K., Foster, I., Kesselman, C.: Resource co-allocation in computational grids. In: HPDC 1999: Proceedings of the The Eighth IEEE International Symposium on High Performance Distributed Computing, Washington, DC, USA, p. 37. IEEE Computer Society, Los Alamitos (1999)Google Scholar
  8. 8.
    Czajkowski, K., Foster, I.T., Karonis, N.T., Kesselman, C., Martin, S., Smith, W., Tuecke, S.: A resource management architecture for metacomputing systems. In: IPPS/SPDP 1998: Proceedings of the Workshop on Job Scheduling Strategies for Parallel Processing, London, UK, pp. 62–82. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  9. 9.
    de Supinski, B.R., Karonis, N.T.: Accurately measuring mpi broadcasts in a computational grid. In: HPDC 1999: Proceedings of the The Eighth IEEE International Symposium on High Performance Distributed Computing, Washington, DC, USA, p. 4. IEEE Computer Society, Los Alamitos (1999)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • F. Gregoretti
    • 1
  • G. Laccetti
    • 2
  • A. Murli
    • 1
    • 2
  • G. Oliva
    • 1
  • U. Scafuri
    • 1
  1. 1.Institute of High Performance Computing and Networking ICAR-CNRNaplesItaly
  2. 2.University of Naples Federico IINaplesItaly

Personalised recommendations