Advertisement

A Linear Time Biclustering Algorithm for Time Series Gene Expression Data

  • Sara C. Madeira
  • Arlindo L. Oliveira
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3692)

Abstract

Several non-supervised machine learning methods have been used in the analysis of gene expression data obtained from microarray experiments. Recently, biclustering, a non-supervised approach that performs simultaneous clustering on the row and column dimensions of the data matrix, has been shown to be remarkably effective in a variety of applications. The goal of biclustering is to find subgroups of genes and subgroups of conditions, where the genes exhibit highly correlated behaviors. In the most common settings, biclustering is an NP-complete problem, and heuristic approaches are used to obtain sub-optimal solutions using reasonable computational resources.

In this work, we examine a particular setting of the problem, where we are concerned with finding biclusters in time series expression data. In this context, we are interested in finding biclusters with consecutive columns. For this particular version of the problem, we propose an algorithm that finds and reports all relevant biclusters in time linear on the size of the data matrix. This complexity is obtained by manipulating a discretized version of the matrix and by using string processing techniques based on suffix trees. We report results in both synthetic and real data that show the effectiveness of the approach.

Keywords

Gene Expression Data Internal Node Linear Time Algorithm Gene Expression Matrix Path Label 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ben-Dor, A., Chor, B., Karp, R., Yakhini, Z.: Discovering local structure in gene expression data: The order–preserving submatrix problem. In: Proc. of the 6th International Conference on Computacional Biology, pp. 49–57 (2002)Google Scholar
  2. 2.
    Cheng, Y., Church, G.M.: Biclustering of expression data. In: Proc. of the 8th International Conference on Intelligent Systems for Molecular Biology, pp. 93–103 (2000)Google Scholar
  3. 3.
    Gusfield, D.: Algorithms on strings, trees, and sequences: computer science and computational biology. Cambridge University Press, Cambridge (1997)zbMATHCrossRefGoogle Scholar
  4. 4.
    Ji, L., Tan, K.: Identifying time-lagged gene clusters using gene expression data. Bioinformatics 21(4), 509–516 (2005)CrossRefGoogle Scholar
  5. 5.
    Koyuturk, M., Szpankowski, W., Grama, A.: Biclustering gene-feature matrices for statistically significant dense patterns. In: Proc. of the 8th Annual International Conference on Research in Computational Molecular Biology, pp. 480–484 (2004)Google Scholar
  6. 6.
    Liu, J., Wang, W., Yang, J.: Biclustering in gene expression data by tendency. In: Proc. of the 3rd International IEEE Computer Society Computational Systems Bioinformatics Conference, pp. 182–193 (2004)Google Scholar
  7. 7.
    Lonardi, S., Szpankowski, W., Yang, Q.: Finding biclusters by random projections. In: Proc. of the 15th Annual Symposium on Combinatorial Pattern Matching, pp. 102–116. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  8. 8.
    Luan, Y., Li, H.: Clustering of time-course gene expression data using a mixed-effects model with b-splines. Bioinformatics 19(4), 474–482 (2003)CrossRefGoogle Scholar
  9. 9.
    Madeira, S.C., Oliveira, A.L.: Biclustering algorithms for biological data analysis: a survey. IEEE/ACM Transactions on Computational Biology and Bioinformatics 1(1), 24–45 (2004)CrossRefGoogle Scholar
  10. 10.
    Martin, D., Brun, C., Remy, E., Mouren, P., Thieffry, D., Jacq, B.: Gotoolbox: functional investigation of gene datasets based on gene ontology. Genome Biology 5(12), R101 (2004)Google Scholar
  11. 11.
    McLachlan, G., Do, K., Ambroise, C.: Analysing microarray gene expression data. Wiley, Chichester (2004)CrossRefGoogle Scholar
  12. 12.
    Monteiro, P., Teixeira, M.C., Jain, P., Tenreiro, S., Fernandes, A.R., Mira, N., Alenquer, M., Freitas, A.T., Oliveira, A.L., Sá-Correia, I.: Yeast search for transcriptional regulators and consensus tracking (yeastract) (2005), http://www.yeastract.com
  13. 13.
    Murali, T.M., Kasif, S.: Extracting conserved gene expression motifs from gene expression data. In: Proc. of the Pacific Symposium on Biocomputing, vol. 8, pp. 77–88 (2003)Google Scholar
  14. 14.
    Peeters, R.: The maximum edge biclique problem is NP-complete. Discrete Applied Mathematics 131(3), 651–654 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Sheng, Q., Moreau, Y., De Moor, B.: Biclustering microarray data by Gibbs sampling. Bioinformatics 19(Suppl. 2), 196–205 (2003)Google Scholar
  16. 16.
    Tanay, A., Sharan, R., Shamir, R.: Discovering statistically significant biclusters in gene expression data. Bioinformatics 18(Suppl. 1), S136–S144 (2002)Google Scholar
  17. 17.
    Tavazoie, S., Hughes, J.D., Campbell, M.J., Cho, R.J., Church, G.M.: Systematic determination of genetic network architecture. Nature Genetics 22, 281–285 (1999)CrossRefGoogle Scholar
  18. 18.
    Ukkonen, E.: On-line construction of suffix trees. Algorithmica 14, 249–260 (1995)zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Sara C. Madeira
    • 1
    • 2
    • 3
  • Arlindo L. Oliveira
    • 1
    • 2
  1. 1.INESC-IDLisbonPortugal
  2. 2.ISTTechnical University of LisbonLisbonPortugal
  3. 3.University of Beira InteriorCovilhãPortugal

Personalised recommendations