Skip to main content

Discovery of Protein Substructures in EM Maps

  • Conference paper
Algorithms in Bioinformatics (WABI 2005)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 3692))

Included in the following conference series:

Abstract

Cryo-EM has become an increasingly powerful technique for elucidating the structure, dynamics and function of large flexible macromolecule assemblies that cannot be determined at atomic-resolution. A major challenge in analyzing EM maps of complexes is the identification of their subunits. We propose a fully automated highly efficient method for discovering high-resolution subunits of a complex, given as an intermediate resolution map, without prior knowledge of their boundaries and content. The method extracts helices from an EM map and uses their spatial arrangement to detect candidate subunits. The method was tested successfully on several simulated 8.0Å resolution maps. The obtained spatial helix arrangement was sufficient for the discovery of the correct subunits from a dataset of 887 SCOP representatives.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Dutta, S., Berman, H.M.: Large macromolecular complexes in the protein data bank: A status report. Structure 13, 381–388 (2005)

    Article  Google Scholar 

  2. Chiu, W., Baker, M.L., Jiang, W., Dougherty, M., Schmid, M.F.: Electron cryomicroscopy of biological machines at subnanometer resolution. Structure 13, 363–372 (2005)

    Article  Google Scholar 

  3. Baumeister, W., Steven, A.: Macromolecular electron microscopy in the era of structural genomics. Trends. Biochem. Sci. 25, 624–631 (2000)

    Article  Google Scholar 

  4. Harauz, G., Van Heel, M.: Exact filters for general geometry three dimensional recontruction. Proceedings of the IEEE Computer Vision and Pattern Recognition Conf. 73, 146–156 (1986)

    Google Scholar 

  5. Auer, M.: Three-dimentional electron cryo-microscopy as a powerful structural tool in molecular medicine. J. Mol. Med. 78, 191–202 (2000)

    Article  Google Scholar 

  6. Rossmann, M.G., Morais, M.C., Leiman, P.G., Zhang, W.: Combining x-ray crystallography and electron microscopy. Structure 13, 355–362 (2005)

    Article  Google Scholar 

  7. Jones, T., Zou, J., Cowan, S., Kjeldgaard, M.: Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr A47, 110–119 (1991)

    Google Scholar 

  8. Humphrey, W., Dalke, A., Schulten, K.: VMD: visual molecular dynamics. J. Mol. Graph. 14, 33–38 (1996)

    Article  Google Scholar 

  9. Volkmann, N., Hanein, D.: Docking of atomic models into reconstruction from electron microscopy. Methods Enzymol 374, 204–225 (2003)

    Article  Google Scholar 

  10. Chacon, P., Wriggers, W.: Multiresolution contour-based fitting of macromolecular structure. J. Mol. Biol. 317, 375–384 (2002)

    Article  Google Scholar 

  11. Jiang, W., Baker, M.L., Ludtke, S.J., Chiu, W.: Bridging the information gap: Computational tools for intermediate resolution structure interpretation. J. Mol. Biol. 208, 1033–1044 (2001)

    Article  Google Scholar 

  12. Rossmann, M.G.: Fitting atomic models into electron-microscopy maps. Acta Crystallogr D56, 1341–1349 (2000)

    Google Scholar 

  13. Kleywegt, G.J., Jones, T.: Detecting folding motifs and similarities in protein structures. Methods Enzymol 277, 525–545 (1997)

    Article  Google Scholar 

  14. Mizuguchi, K., Go, N.: Comparison of spatial arrangements of secondary structural elements in proteins. Protein Eng. 8, 353–362 (1995)

    Article  Google Scholar 

  15. Gonzalez, R.C., Woods, R.E.: Digital Image Processing, second edition. Prentice Hall, Upper Saddle River (2002)

    Google Scholar 

  16. Ludtke, S.J., Baldwin, P.R., Chiu, W.: EMAN: Semiautomated software for high-resolution single-particle reconstructions. J. Struct. Biol. 128, 82–97 (1999)

    Article  Google Scholar 

  17. Wriggers, W., Birmanns, S.: Using situs for flexible and rigid-body fitting of multiresolution single-molecule data. J. Struct. Biol. 133, 193–202 (2001)

    Article  Google Scholar 

  18. Brigham, E.O.: The Fast Fourier Transform and its Applications. Prentice Hall, Upper Saddle River (1988)

    Google Scholar 

  19. Felzenszwalb, P.F., Huttenlocher, D.P.: Efficient graph-based image segmentation. Int. J.Comput. Vision 59, 167–181 (2004)

    Article  Google Scholar 

  20. Cormen, T.H., Leiserson, C.E., Rivest, R.L.: Interoduction to Algorithms. The MIT Press, Cambridge (1990)

    Google Scholar 

  21. Dror, O., Benyamini, H., Nussinov, R., Wolfson, H.: MASS: multiple structural alignment by secondary structures. Bioinformatics 19 Suppl. 1, i95–i104 (2003)

    Google Scholar 

  22. Dror, O., Benyamini, H., Nussinov, R., Wolfson, H.: Multiple structural alignment by secondary structures:Algorithm and applications. Protein Sci. 12, 2492–2507 (2003)

    Article  Google Scholar 

  23. Mehlhorn, K.: The LEDA Platform of Combinatorial and Geometric Computing. Cambridge University Press, United Kingdom (1999)

    Google Scholar 

  24. Kabsch, W.: A discussion of the solution for the best rotation to relate two sets of vectors. Acta Crystallogr A34, 827–828 (1978)

    Google Scholar 

  25. Murzin, A., Brenner, S., Hubbard, T., Chothia, C.: SCOP: a structural classification of proteins database for the investigation of sequences and structures. J. Mol. Biol. 247, 536–540 (1995)

    Google Scholar 

  26. Tagari, M., Newman, R., Chagoyen, M., Carazo, J., Henrick, K.: New electron microscopy database and deposition system. Trends. Biochem. Sci. 27, 589 (2002)

    Article  Google Scholar 

  27. Inbar, Y., Benyamini, H., Nussinov, R., Wolfson, H.: Prediction of multimolecular assemblies by multiple docking. J. Mol. Biol. 349, 435–447 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lasker, K., Dror, O., Nussinov, R., Wolfson, H. (2005). Discovery of Protein Substructures in EM Maps. In: Casadio, R., Myers, G. (eds) Algorithms in Bioinformatics. WABI 2005. Lecture Notes in Computer Science(), vol 3692. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11557067_35

Download citation

  • DOI: https://doi.org/10.1007/11557067_35

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-29008-7

  • Online ISBN: 978-3-540-31812-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics