Improved Maintenance of Molecular Surfaces Using Dynamic Graph Connectivity

  • Eran Eyal
  • Dan Halperin
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3692)


We present recent developments in efficiently maintaining the boundary and surface area of protein molecules as they undergo conformational changes. As the method that we devised keeps a highly accurate representation of the outer boundary surface and of the voids in the molecule, it can be useful in various applications, in particular in Monte Carlo Simulation. The current work continues and extends our previous work [10] and implements an efficient method for recalculating the surface area under conformational (and hence topological) changes based on techniques for efficient dynamic maintenance of graph connectivity. This method greatly improves the running time of our algorithm on most inputs, as we demonstrate in the experiments reported here.


Graph Connectivity Kinematic Chain Molecular Surface Exposed Region Atom Sphere 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alder, B.J., Wainwright, T.E.: Phase transition for a hard sphere system. J. Chem. Phys. 27, 1208–1209 (1957)CrossRefGoogle Scholar
  2. 2.
    Bajaj, C.L., Pascucci, V., Shamir, A., Holt, R.J., Netravali, A.N.: Dynamic maintenance and visualization of molecular surfaces. Discrete Applied Mathematics 127(1), 23–51 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Binder, K., Heerman, D.: MCS in Statistical Physics, 2nd edn. Springer, Berlin (1992)Google Scholar
  4. 4.
    Bryant, R., Edelsbrunner, H., Koehl, P., Levitt, M.: The area derivative of a space-filling diagram. Discrete & Computational Geometry 32, 293–308 (2004)zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Cheng, H.L., Dey, T.K., Edelsbrunner, H., Sullivan, J.: Dynamic skin triangulation. Discrete & Computational Geometry 25, 525–568 (2001)zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Connolly, M.L.: Analytical molecular surface calculation. J. of Applied Crystallography 16, 548–558 (1983)CrossRefGoogle Scholar
  7. 7.
    Connolly, M.L.: Solvent-accessible surfaces of proteins and nucleic acids. Science 221, 709–713 (1983)CrossRefGoogle Scholar
  8. 8.
    Craig, J.J.: Introduction to Robotics: Mechanics and Control, 3rd edn. Prentice Hall, Englewood Cliffs (2005)Google Scholar
  9. 9.
    Eppstein, D., Galil, Z., Italiano, G.F., Nissenzweig, A.: Sparsification — a technique for speeding up dynamic graph algorithms. Journal of the ACM 44(5), 669–696 (1997)zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Eyal, E., Halperin, D.: Dynamic maintenance of molecular surfaces under conformational changes. In: Proceedings of the 21st ACM Symposium on Computational Geometry (SoCG), pp. 45–54 (2005)Google Scholar
  11. 11.
    Frederickson, G.N.: Data structures for on-line updating of minimum spanning trees, with applications. SIAM J. Computing 14(4), 781–798 (1985)zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Halperin, D., Overmars, M.H.: Spheres, molecules, and hidden surface removal. Computational Geometry: Theory and Applications 11(2), 83–102 (1998)zbMATHMathSciNetGoogle Scholar
  13. 13.
    Halperin, D., Shelton, C.R.: A perturbation scheme for spherical arrangements with application to molecular modeling. Comput. Geom. Theory Appl. 10, 273–287 (1998)zbMATHMathSciNetGoogle Scholar
  14. 14.
    Hansmann, H., Okamoto, Y.: New Monte Carlo algorithms for protein folding. Current Opinion in Structural Biology 9(2), 177–183 (1999)CrossRefGoogle Scholar
  15. 15.
    Henzinger, M.R., King, V.: Randomized fully dynamic graph algorithms with polylogarithmic time per operation. Journal of the ACM 46(4), 502–516 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Holm, J., De Lichtenberg, K., Thorup, M.: Poly-logarithmic deterministic fully-dynamic algorithms for connectivity, minimum spanning tree, 2-edge, and biconnectivity. Journal of the ACM 48(4), 723–760 (2001)zbMATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Iyer, R., Karger, D., Rahul, H., Thorup, M.: An experimental study of polylogarithmic, fully dynamic, connectivity algorithms. J. Exp. Algorithmics 6, 4 (2001)CrossRefMathSciNetGoogle Scholar
  18. 18.
    Leach, A.R.: Molecular modeling: Principles and applications. Addison Wesley Longman Limited, Amsterdam (1996)Google Scholar
  19. 19.
    Lee, B., Richards, F.M.: The interpretation of protein structure: Estimation of static accessibility. J. of Molecular Biology 55, 379–400 (1971)CrossRefGoogle Scholar
  20. 20.
    LeGrand, S.M., Merz, K.M.: Rapid approximation to molecular surface area via the use of boolean logic and lookup tables. Comput. Chem. 14, 349–352 (1993)CrossRefGoogle Scholar
  21. 21.
    Liang, J., Edelsbrunner, H., Fu, P., Sudhakar, P.V., Subramaniam, S.: Analytical shape computation of macromolecules: I. molecular area and volume through alpha shape. Proteins: Structure, Function, and Genetics 33, 1–17 (1998)CrossRefGoogle Scholar
  22. 22.
    Lotan, I., Schwarzer, F., Halperin, D., Latombe, J.-C.: Algorithm and data structures for efficient energy maintenance during Monte Carlo simulation of proteins. Journal of Computational Biology 11(5), 902–932 (2004)CrossRefGoogle Scholar
  23. 23.
    Mezey, P.: Molecular surfaces. In: Lipkowitz, K.B., Boyd, D.B. (eds.) Reviews in Computational Chemistry, vol. I, pp. 265–294. VCH Publishers, Weinheim (1990)CrossRefGoogle Scholar
  24. 24.
    Richards, F.M.: Areas, volumes, packing, and protein structure. Annual Reviews of Biophysics and Bioengineering 6, 151–176 (1977)CrossRefGoogle Scholar
  25. 25.
    Sanner, M.F., Olson, A.J.: Real time surface reconstruction for moving molecular fragments. In: Pacific Symposium on Biocomputing 1997, Maui, Hawaii (1997)Google Scholar
  26. 26.
    Thorup, M.: Near-optimal fully-dynamic graph connectivity. In: STOC 2000: Proceedings of the thirty-second annual ACM symposium on Theory of computing, pp. 343–350. ACM Press, New York (2000)CrossRefGoogle Scholar
  27. 27.
    Varshney, A., Brooks Jr., F.P., Wright, W.V.: Computing smooth molecular surfaces. IEEE Computer Graphics and Applications 14, 19–25 (1994)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Eran Eyal
    • 1
  • Dan Halperin
    • 1
  1. 1.School of Computer ScienceTel Aviv UniversityIsrael

Personalised recommendations