Advertisement

Optimal Protein Threading by Cost-Splitting

  • P. Veber
  • N. Yanev
  • R. Andonov
  • V. Poirriez
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3692)

Abstract

In this paper, we use integer programming approach for solving a hard combinatorial optimization problem, namely protein threading. For this sequence-to-structure alignment problem we apply cost-splitting technique to derive a new Lagrangian dual formulation. The optimal solution of the dual is sought by an algorithm of polynomial complexity. For most of the instances the dual solution provides an optimal or near-optimal (with negligible duality gap) alignment. The speed-up with respect to the widely promoted approach for solving the same problem in [17] is from 100 to 250 on computationally interesting instances. Such a performance turns computing score distributions, the heaviest task when solving PTP, into a routine operation.

Keywords

Computational Biology Lagrangian Relaxation Alignment Problem Lagrangian Duality Contact Graph 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Akutsu, T., Miyano, S.: On the approximation of protein threading. Theoretical Computer Science 210, 261–275 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Andonov, R., Balev, S., Yanev, N.: Protein Threading Problem: From Mathematical Models to Parallel Implementations. INFORMS Journal on Computing 16(4), 393–405 (2004)CrossRefMathSciNetGoogle Scholar
  3. 3.
    Balev, S.: Solving the Protein Threading Problem by Lagrangian Relaxation. In: Jonassen, I., Kim, J. (eds.) WABI 2004. LNCS (LNBI), vol. 3240, pp. 182–193. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  4. 4.
    Fischer, D.: http://www.cs.bgu.ac.il/~dfishcer/CAFASP3/ (December 2002)
  5. 5.
    Caprara, A., Carr, R., Israil, S., Lancia, G., Walenz, B.: 1001 Optimal PDB Structure Alignments: Integer Programming Methods for Finding the Maximum Contact Map Overlap. Journal of Computational Biology 11(1), 27–52 (2004)CrossRefGoogle Scholar
  6. 6.
    Greenberg, H., Hart, W., Lancia, G.: Opportunities for combinatorial optimization in computational biology. INFORMS Journal on Computing 16(3) (2004)Google Scholar
  7. 7.
  8. 8.
    Lathrop, R.: The protein threading problem with sequence amino acid interaction preferences is NP-complete. Protein Eng. 7, 1059–1068 (1994)CrossRefGoogle Scholar
  9. 9.
    Marin, A., Pothier, J., Zimmermann, K., Gibrat, J.-F.: FROST: A Filter Based Recognition Method. Proteins 49(4), 493–509 (2002)CrossRefGoogle Scholar
  10. 10.
    Lengauer, T.: Computational biology at the beginning of the post-genomic era. In: Wilhelm, R. (ed.) Informatics: 10 Years Back - 10 Years Ahead. LNCS, vol. 2000, pp. 341–355. Springer, Heidelberg (2001)Google Scholar
  11. 11.
    Lancia, G.: Integer Programming Models for Computational Biology Problems. J. Comput. Sci. & Technol. 19(1), 60–77 (2004)CrossRefMathSciNetGoogle Scholar
  12. 12.
    Lathrop, R.H., Smith, T.F.: Global optimum protein threading with gapped alignment and empirical pair potentials. J. Mol. Biol. 255, 641–665 (1996)CrossRefGoogle Scholar
  13. 13.
    Nemhauser, G.L., Wolsey, L.A.: Integer and Combinatorial Optimization. Wiley, Chichester (1988)zbMATHGoogle Scholar
  14. 14.
    Poirriez, V., Marin, A., Andonov, R., Gibrat, J.-F.: FROST: Revisited and Distributed, HiCOMB 2005. In: Fourth IEEE International Workshop on High Performance Computational Biology, Denver, CO (April 4, 2005)Google Scholar
  15. 15.
    R.: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria (2004) http://www.R-project.org
  16. 16.
    Setubal, J.C., Meidanis, J.: Introduction to computational molecular biology, ch. 8, pp. 252–259. Brooks/Cole Publishing Company, 511 Forest Lodge Road, Pacific Grove, CA 93950 (1997)Google Scholar
  17. 17.
    Xu, J., Li, M., Lin, G., Kim, D., Xu, Y.: RAPTOR: optimal protein threading by linear programming. Journal of Bioinformatics and Computational Biology 1(1), 95–118 (2003)CrossRefGoogle Scholar
  18. 18.
    Xu, Y., Xu, D.: Protein threading using PROSPECT: design and evaluation. Proteins: Structure, Function, and Genetics 40, 343–354 (2000)CrossRefGoogle Scholar
  19. 19.
    Yanev, N., Andonov, R.: Solving the protein threading problem in parallel. In: HiCOMB 2003 – Second IEEE International Workshop on High Performance Computational Biology, Avril, Nice, France (2003)Google Scholar
  20. 20.
    Yanev, N., Andonov, R.: Parallel Divide and Conquer Approach for the Protein Threading Problem. Concurrency and Computation: Practice and Experience 16, 961–974 (2004)CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • P. Veber
    • 1
  • N. Yanev
    • 1
  • R. Andonov
    • 1
  • V. Poirriez
    • 2
  1. 1.IRISARennesFrance
  2. 2.University of ValenciennesValenciennesFrance

Personalised recommendations