Advertisement

Clustering Gene Expression Series with Prior Knowledge

  • Laurent Bréhélin
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3692)

Abstract

Microarrays allow monitoring of thousands of genes over time periods. Recently, gene clustering approaches specially adapted to deal with the time dependences of these data have been proposed. According to these methods, we investigate here how to use prior knowledge about the approximate profile of some classes to improve the classification result. We propose a Bayesian approach to this problem. A mixture model is used to describe and classify the data. The parameters of this model are constrained by a prior distribution defined with a new type of model that can express both our prior knowledge about the profile of classes of interest and the temporal nature of the data. Then, an EM algorithm estimates the parameters of the mixture model by maximizing its posterior probability.

Supplementary Material:

http://www.lirmm.fr/~brehelin/WABI05.pdf

Keywords

Prior Knowledge Mixture Model Hide Markov Model Prior Distribution Prior Probability 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Spellman, P.T., Sherlock, G., Zhang, M.Q., Iyer, V.R., Anders, K., Eisen, M.B., Brown, P.O., Botstein, D., Futcher, B.: Comprehensive identification of cell cycle-regulated genes of the yeast saccharomyces cerevisiae by microarray hybridization. Mol Biol Cell 9, 3273–3297 (1998)Google Scholar
  2. 2.
    Eisen, M.B., Spellman, P.T., Brown, P.O., Botstein, D.: Cluster analysis and display of genome-wide expression patterns. Proc Natl Acad Sci USA 95, 14863–14868 (1998)CrossRefGoogle Scholar
  3. 3.
    Lloyd, S.: Least squares quantization in PCM. IEEE Trans. Info. Theory IT-2, 129–137 (1982)Google Scholar
  4. 4.
    Herwig, R., Poustka, A.J., Muller, C., Bull, C., Lehrach, H., O’Brien, J.: Large-scale clustering of cDNA-fingerprinting data. Genome Res 9, 1093–1105 (1999)CrossRefGoogle Scholar
  5. 5.
    Kohonen, T.: Self-Organizing Maps. Springer, Heidelberg (1997)zbMATHGoogle Scholar
  6. 6.
    Tamayo, P., Slonim, D., Mesirov, J., Zhu, Q., Kitareewan, S., Dmitrovsky, E., Lander, E.S., Golub, T.R.: Interpreting patterns of gene expression with self-organizing maps: methods and application to hematopoietic differentiation. Proc Natl Acad Sci USA 96, 2907–2912 (1999)CrossRefGoogle Scholar
  7. 7.
    Ramoni, M.F., Sebastiani, P., Kohane, I.S.: Cluster analysis of gene expression dynamics. Proc Natl Acad Sci USA 99, 9121–9126 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Bar-Joseph, Z., Gerber, G.K., Gifford, D.K., Jaakkola, T.S., Simon, I.: Continuous representations of time-series gene expression data. J Comput Biol 10, 341–356 (2003)CrossRefGoogle Scholar
  9. 9.
    Schliep, A., Schonhuth, A., Steinhoff, C.: Using hidden markov models to analyze gene expression time course data. Bioinformatics 19 Suppl 1, 255–263 (2003)CrossRefGoogle Scholar
  10. 10.
    Rabiner, L.R.: A tutorial on hidden Markov models and selected applications in speech recognition. Proceedings of the IEEE 77, 257–285 (1989)CrossRefGoogle Scholar
  11. 11.
    Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum likelihood from incomplete data via the EM algorithm. J. Royal Stat. Soc. B 39, 1–38 (1977)zbMATHMathSciNetGoogle Scholar
  12. 12.
    McLachlan, G., Krishnan, T.: Finite mixture models. John Wiley, Chichester (2000)zbMATHCrossRefGoogle Scholar
  13. 13.
    Duda, R., Hart, P., Stork, D.: Pattern Classification. John Wiley, Chichester (2001)zbMATHGoogle Scholar
  14. 14.
    Casacuberta, F.: Some relations among stochastic finite state networks used in automatic speech recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence 12, 691–695 (1990)CrossRefGoogle Scholar
  15. 15.
    Iyer, V.R., Eisen, M.B., Ross, D.T., Schuler, G., Moore, T., Lee, J.C., Trent, J.M., Staudt, L.M., Hudson, J.J., Boguski, M.S., Lashkari, D., Shalon, D., Botstein, D., Brown, P.O.: The transcriptional program in the response of human fibroblasts to serum. Science 283, 83–87 (1999)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Laurent Bréhélin
    • 1
  1. 1.Laboratoire d’InformatiqueRobotique et Microélectronique de MontpellierMontpellierFrance

Personalised recommendations