Advertisement

Linear Time Algorithm for Parsing RNA Secondary Structure

  • Baharak Rastegari
  • Anne Condon
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3692)

Abstract

Accurate prediction of pseudoknotted RNA secondary structure is an important computational challenge. Typical prediction algorithms aim to find a structure with minimum free energy according to some thermodynamic (“sum of loop energies”) model that is implicit in the recurrences of the algorithm. However, a clear definition of what exactly are the loops and stems in pseudoknotted structures, and their associated energies, has been lacking.

We present a comprehensive classification of loops in pseudoknotted RNA secondary structures. Building on an algorithm of Bader et al. [2] we obtain a linear time algorithm for parsing a secondary structures into its component loops.

We also give a linear time algorithm to calculate the free energy of a pseudoknotted secondary structure. This is useful for heuristic prediction algorithms which are widely used since (pseudoknotted) RNA secondary structure prediction is NP-hard. Finally, we give a linear time algorithm to test whether a secondary structure is in the class handled by Akutsu’s algorithm [1]. Using our tests, we analyze the generality of Akutsu’s algorithm for real biological structures.

Keywords

Secondary Structure Dynamic Programming Algorithm Closed Region Band Region Base Index 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Akutsu, T.: Dynamic programming algorithms for RNA secondary structure prediction with pseudoknots. Discrete Applied Mathematics 104, 45–62 (2000)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Bader, D.A., Moret, B.M.E., Yan, M.: A linear-time algorithm for computing inversion distance between signed permutations with an experimental study. Journal of Computational Biology 8, 483–491 (2001)CrossRefGoogle Scholar
  3. 3.
    van Batenburg, F.H.D., et al.: Pseudobase: a database with RNA pseudoknots. Nucl. Acids Res. 28, 201–204 (2000)CrossRefGoogle Scholar
  4. 4.
    Berman, H.M., et al.: The Nucleic Acid Database; A Comprehensive Relational Database of Three-Dimensional Structures of Nucleic Acids. Biophys. J. 63, 751–759 (1992)CrossRefGoogle Scholar
  5. 5.
    Brown, J.W.: The Ribonuclease P Database. Nucl. Acids Res. 27, 314 (1999)CrossRefGoogle Scholar
  6. 6.
    Cannone, J.J., et al.: The Comparative RNA Web (CRW) Site; an online database of comparative sequence and structure information for ribosomal, intron, and other RNAs. BMC Bioinformatics 3 (2002)Google Scholar
  7. 7.
    Condon, A., Davy, B., Rastegari, B., Zhao, S., Tarrant, T.: Classifying RNA pseudoknotted structures. Theor. Comput. Sci. 320, 35–50 (2004)zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Dennis, C.: The brave new world of RNA. Nature 418, 122–124 (2002)CrossRefGoogle Scholar
  9. 9.
    Dirks, R.M., Pierce, N.A.: A partition function algorithm for nucleic acid secondary structure including pseudoknots. J. Comput. Chem. 24, 1664–1677 (2003)CrossRefGoogle Scholar
  10. 10.
    Han, K., Byun, Y.: PseudoViewer2: visualization of RNA pseudoknots of any type. Nucl. Acids Res. 31, 3432–3440 (2003)CrossRefGoogle Scholar
  11. 11.
    Lyngsø, R.B., Pedersen, C.N.: RNA pseudoknot prediction in energy-based models. J. Computational Biology 7, 409–427 (2000)CrossRefGoogle Scholar
  12. 12.
    Rivas, E., Eddy, S.R.: A dynamic programming algorithm for RNA structure prediction including pseudoknots. J. Molecular Biology 285, 2053–2068 (1999)CrossRefGoogle Scholar
  13. 13.
    Rosenblad, M.A., Gorodkin, J., Knudsen, B., Zwieb, C., Samuelsson, T.: SRPDB: Signal Recognition Particle Database. Nucl. Acids Res. 31, 363–364 (2003)CrossRefGoogle Scholar
  14. 14.
    Uemura, Y., Hasegawa, A., Kobayashi, S., Yokomori, T.: Tree adjoining grammars for RNA structure prediction. Theor. Comput. Sci. 210, 277–303 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Zwieb, C., Gorodkin, J., Knudsen, B., Burks, J., Wower, J.: tmRDB (tmRNA database). Nucl. Acids Res. 31, 446–447 (2003)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Baharak Rastegari
    • 1
  • Anne Condon
    • 1
  1. 1.Department of Computer ScienceUniversity of British Columbia 

Personalised recommendations