Reaction Motifs in Metabolic Networks

  • Vincent Lacroix
  • Cristina G. Fernandes
  • Marie-France Sagot
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3692)


The classic view of metabolism as a collection of metabolic pathways is being questioned with the currently available possibility of studying whole networks. Novel ways of decomposing the network into modules and motifs that could be considered as the building blocks of a network are being suggested. In this work, we introduce a new definition of motif in the context of metabolic networks. Unlike in previous works on (other) biochemical networks, this definition is not based only on topological features. We propose instead to use an alternative definition based on the functional nature of the components that form the motif. After introducing a formal framework motivated by biological considerations, we present complexity results on the problem of searching for all occurrences of a reaction motif in a network, and introduce an algorithm that is fast in practice in most situations. We then show an initial application to the study of pathway evolution.


Bipartite Graph Metabolic Network Biochemical Network Subgraph Isomorphism Reaction Motif 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Recommendations of the Nomenclature Commitee of the International Union of Biochemistry and Molecular Biology on the Nomenclature and Classificationof Enzymes. Oxford University Press, Oxford (1992)Google Scholar
  2. 2.
    Alm, E., Arkin, A.: Biological networks. Current opinion in Structural Biology 13, 193–202 (2003)CrossRefGoogle Scholar
  3. 3.
    Arita, M.: The metabolic world of escherichia coli is not small. PNAS 101(6), 1543–1547 (2004)CrossRefGoogle Scholar
  4. 4.
    Garey, M.R., Johnson, D.S.: Computers and Intractability. A Guide to the Theory of NP-Completeness. Freeman, New York (1979)zbMATHGoogle Scholar
  5. 5.
    Guimerà, R., Nunes Amaral, L.A.: Functional cartography of complex metabolic networks. Nature 433(7028), 895–900 (2005)CrossRefGoogle Scholar
  6. 6.
    Hartwell, L., Hopfield, J., Leibler, A., Murray, A.: From molecular to modular cell biology. Nature 402, c47–c52 (1999)Google Scholar
  7. 7.
    Jeong, H., Tombor, B., Albert, R., Oltvai, Z.N., Barabasi, A.L.: The large-scale organization of metabolic networks. Nature 407, 651–654 (2000)CrossRefGoogle Scholar
  8. 8.
    Kanehisa, M., Goto, S., Kawashima, S., Okuno, Y., Hattori, M.: The KEGG resource for deciphering the genome. Nucleic Acids Research 32, 277–280 (2004)CrossRefGoogle Scholar
  9. 9.
    Kitano, H.: Systems biology: A brief overview. Science 295, 1662–1664 (2002)CrossRefGoogle Scholar
  10. 10.
    Ma, H.W., Zhao, X.M., Yuan, Y.J., Zeng, A.P.: Decomposition of metabolic network into functional modules based on the global connectivity structure of reaction graph. Bioinformatics 20(12), 1870–1876 (2004)CrossRefGoogle Scholar
  11. 11.
    Papin, J.A., Reed, J.L., Palsson, B.O.: Hierarchical thinking in network biology: the unbiased modularization of biochemical networks. Trends Biochem Sci. 29(12), 641–647 (2004)CrossRefGoogle Scholar
  12. 12.
    Papin, J.A., Stelling, J., Price, N.D., Klamt, S., Schuster, S., Palsson, B.O.: Comparison of network-based pathway analysis methods. Trends Biotechnol 22(8), 400–405 (2004)CrossRefGoogle Scholar
  13. 13.
    Pinter, R.Y., Rokhlenko, O., Tsur, D., Ziv-Ukelson, M.: Approximate labelled subtree homeomorphism. In: Sahinalp, S.C., Muthukrishnan, S.M., Dogrusoz, U. (eds.) CPM 2004. LNCS, vol. 3109, pp. 59–73. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  14. 14.
    Schuster, S., Pfeiffer, T., Moldenhauer, F., Koch, I., Dandekar, T.: Exploring the pathway structure of metabolism: decomposition into subnetworks and application to Mycoplasma pneumoniae. Bioinformatics 18(2), 351–361 (2002)CrossRefGoogle Scholar
  15. 15.
    Segrè, D.: The regulatory software of cellular metabolism. Trends Biotechnol. 22(6), 261–265 (2004)CrossRefGoogle Scholar
  16. 16.
    Shannon, P., Markiel, A., Ozier, O., Baliga, N.S., Wang, J.T., Ramage, D., Amin, N., Schwikowski, B., Ideker, T.: Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Res 13(11), 2498–2504 (2003)CrossRefGoogle Scholar
  17. 17.
    Shen-Orr, S., Milo, R., Mangan, S., Alon, U.: Network motifs in the transcriptional regulation network of escherichia coli. Nat. Genet. 31(1), 64–68 (2002)CrossRefGoogle Scholar
  18. 18.
    Stelling, J.: Mathematical models in microbial systems biology. Curr Opin Microbiol. 7(5), 513–518 (2004)CrossRefGoogle Scholar
  19. 19.
    Tohsato, Y., Matsuda, H., Hashimoto, A.: A multiple alignment algorithm for metabolic pathway analysis using enzyme hierarchy. In: Proc. Int. Conf. Intell. Syst. Mol. Biol., pp. 376–383 (2000)Google Scholar
  20. 20.
    Velasco, A.M., Leguina, J.I., Lazcano, A.: Molecular evolution of the lysine biosynthetic pathways. J. Mol. Evol. 55, 445–459 (2002)CrossRefGoogle Scholar
  21. 21.
    Voss, K., Heiner, M., Koch, I.: Steady state analysis of metabolic pathways using Petri nets. Silico Biol. 3(3), 367–387 (2003)Google Scholar
  22. 22.
    Wolf, D., Arkin, A.: Motifs, modules and games in bacteria. Curr. Opin. Microbiol. 6(2), 125–134 (2003)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Vincent Lacroix
    • 1
    • 2
  • Cristina G. Fernandes
    • 3
  • Marie-France Sagot
    • 1
    • 2
    • 4
  1. 1.Équipe BAOBAB, Laboratoire de Biométrie et Biologie ÉvolutiveUniversité Lyon IFrance
  2. 2.Projet HelixINRIA Rhône-AlpesFrance
  3. 3.Instituto de Matemática e EstatísticaUniversidade de São PauloBrazil
  4. 4.Department of Computer ScienceKing’s College LondonEngland

Personalised recommendations