Skip to main content

A Descartes Algorithm for Polynomials with Bit-Stream Coefficients

  • Conference paper
Computer Algebra in Scientific Computing (CASC 2005)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3718))

Included in the following conference series:

Abstract

The Descartes method is an algorithm for isolating the real roots of square-free polynomials with real coefficients. We assume that coefficients are given as (potentially infinite) bit-streams. In other words, coefficients can be approximated to any desired accuracy, but are not known exactly. We show that a variant of the Descartes algorithm can cope with bit-stream coefficients. To isolate the real roots of a square-free real polynomial \(q(x)=q_{n^{x^{n}}}+...+q_{0}\) with root separation ρ, coefficients |q n | ≥ 1 and \(|q_{i}|\leq 2^{\tau}\), it needs coefficient approximations to O(n(log(1/ρ) + τ)) bits after the binary point and has an expected cost of O(n 4 (log(1/ρ) + τ)2) bit operations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Collins, G.E., Akritas, A.G.: Polynomial real root isolation using Descartes’ rule of signs. In: Jenks, R.D. (ed.) Proceedings of the 1976 ACM Symposium on Symbolic and Algebraic Computation, pp. 272–275. ACM Press, New York (1976)

    Chapter  Google Scholar 

  2. Uspensky, J.: Theory of Equations. McGraw-Hill, New York (1948)

    Google Scholar 

  3. Krandick, W.: Isolierung reeller Nullstellen von Polynomen. In: Herzberger, J. (ed.) Wissenschaftliches Rechnen, pp. 105–154. Akademie-Verlag (1995)

    Google Scholar 

  4. Rouillier, F., Zimmermann, P.: Efficient isolation of a polynomial’s real roots. J. Computational and Applied Mathematics 162, 33–50 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  5. Lane, J.M., Riesenfeld, R.F.: Bounds on a polynomial. BIT 21, 112–117 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  6. Mourrain, B., Vrahatis, M.N., Yakoubsohn, J.C.: On the complexity of isolating real roots and computing with certainty the topological degree. J. Complexity 18, 612–640 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  7. Basu, S., Pollack, R., Roy, M.F.: Algorithms in Real Algebraic Geometry. Springer, Heidelberg (2003)

    MATH  Google Scholar 

  8. Mourrain, B., Rouillier, F., Roy, M.F.: Bernstein’s basis and real root isolation. Rapport de recherche 5149, INRIA-Rocquencourt (2004), http://www.inria.fr/rrrt/rr-5149.html—

  9. Collins, G.E., Johnson, J.R., Krandick, W.: Interval arithmetic in cylindrical algebraic decomposition. J. Symbolic Computation 34, 143–155 (2002)

    Article  MathSciNet  Google Scholar 

  10. Henrici, P.: Applied and Computational Complex Analysis, vol. 1. Wiley, Chichester (1974)

    MATH  Google Scholar 

  11. Weyl, H.: Randbemerkungen zu Hauptproblemen der Mathematik II: Fundamentalsatz der Algebra und Grundlagen der Mathematik. Math. Z. 20, 131–152 (1924)

    Article  MathSciNet  Google Scholar 

  12. Pan, V.: Solving a polynomial equation: Some history and recent progress. SIAM Review 39, 187–220 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  13. Pan, V.Y.: Univariate polynomials: Nearly optimal algorithms for numerical factorization and root finding. J. Symbolic Computation 33, 701–733 (2002)

    Article  MATH  Google Scholar 

  14. Prautzsch, H., Boehm, W., Paluszny, M.: Bézier and B-Spline Techniques. Springer, Heidelberg (2002)

    MATH  Google Scholar 

  15. Hoschek, J., Lasser, D.: Fundamentals of computer aided geometric design. A K Peters, Wellesley (1996); Translation of: Grundlagen der geometrischen Datenverarbeitung, Teubner(1989)

    Google Scholar 

  16. Krandick, W., Mehlhorn, K.: New bounds for the Descartes method. Technical report, Drexel University, Dept. of Computer Science (2004); to appear in J. Symbolic Computation, http://www.mcs.drexel.edu/page.php?name=reports/DU-CS-04-04.html

  17. Smith, B.T.: Error bounds for zeros of a polynomial based upon Gerschgorin’s theorems. J. ACM 17, 661–674 (1970)

    Article  MATH  Google Scholar 

  18. Bini, D.A., Fiorentino, G.: Design, analysis, and implementation of a multiprecision polynomial rootfinder. Numerical Algorithms 23, 127–173 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  19. Yap, C.K.: Fundamental Problems of Algorithmic Algebra. Oxford University Press, Oxford (2000)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Eigenwillig, A., Kettner, L., Krandick, W., Mehlhorn, K., Schmitt, S., Wolpert, N. (2005). A Descartes Algorithm for Polynomials with Bit-Stream Coefficients. In: Ganzha, V.G., Mayr, E.W., Vorozhtsov, E.V. (eds) Computer Algebra in Scientific Computing. CASC 2005. Lecture Notes in Computer Science, vol 3718. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11555964_12

Download citation

  • DOI: https://doi.org/10.1007/11555964_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-28966-1

  • Online ISBN: 978-3-540-32070-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics