Advertisement

XML Access Control with Policy Matching Tree

  • Naizhen Qi
  • Michiharu Kudo
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3679)

Abstract

XML documents are frequently used in applications such as business transactions and medical records involving sensitive information. Access control on the basis of data location or value in an XML document is therefore essential. However, current approaches to efficient access control over XML documents have suffered from scalability problems because they tend to work on individual documents. To resolve this problem, we proposed a table-based approach in [28] . However, [28] also imposed limitations on the expressiveness, and real-time access control updates were not supported. In this paper, we propose a novel approach to XML access control through a policy matching tree (PMT) which performs accessibility checks with an efficient matching algorithm, and is shared by all documents of the same document type. The expressiveness can be expanded and real-time updates are supported because of the PTM’s flexible structure. Using synthetic and real data, we evaluate the performance and scalability to show it is efficient for checking accessibility for XML databases.

Keywords

Access Control Access Control Policy Access Control Model Access Request XPath Expression 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Altinel, M., Franklin, M.: Efficient filtering of XML documents for selective dissemination of information. In: VLDB, pp. 53–64 (2000)Google Scholar
  2. 2.
    Bertino, E., Castano, S., Ferrari, E., Mesiti, M.: Controlled access and dissemination of XML documents. In: ACM WIDM, pp. 22–27 (1999)Google Scholar
  3. 3.
    Bertino, E., Castano, S., Ferrari, E., Mesiti, M.: Specifying and Enforcing Access Con-trol Policies for XML document Sources. World Wide Web Journal 3(3), 139–151 (2000)zbMATHCrossRefGoogle Scholar
  4. 4.
    Bertino, E., Ferrari, E.: Secure and selective dissemination of XML documents. In: ACM TISSEC, pp. 290–331 (2002)Google Scholar
  5. 5.
    Bishop, M., Snyder, L.: The transfer of information and authority in a protection system. In: Proc. 17th ACM Symposium on Operating Systems Principles (1979)Google Scholar
  6. 6.
    Boag, S., Chamberlin, D., Fernandez, M.F., Florescu, D., Robie, J., Simeon, J.: XQuery 1.0: An XML query language, W3C Working Draft, November 12 (2003), http://www.w3.org/TR/xquery/
  7. 7.
    Bray, T., Paoli, J., Sperberg-McQueen, C.M.: Extensible Markup Language (XML) 1.0. W3C Recommendation (Febrauary 1998), Available at http://www.w3g.org/TR/REC-xml
  8. 8.
    Chan, C.-Y., Felber, P., Garofalakis, M., Rastogi, R.: Efficient filtering of XML documents with XPath expressions. In: ICDE, pp. 235–244 (2002)Google Scholar
  9. 9.
    Cho, S., Amer-Yahia, S., Lakshmanan, L.V.S., Srivastava, D.: Optimizing the secure evaluation of twig queries. In: VLDB, pp. 490–501 (2000)Google Scholar
  10. 10.
    Clark, J., DeRose, S.: XML Path Language (XPath) version 1.0. W3C Recommendation (1999), Available at http://www.w3g.org/TR/xpath
  11. 11.
    Damiani, E., De Capitani di Vimercati, S., Paraboschi, S., Samarati, P.: Design and Implementation of an Access Control Processor for XML documents. In: WWW9 (2000)Google Scholar
  12. 12.
    Damiani, E., De Capitani di Vimercati, S., Paraboschi, S., Samarati, P.: A Fine-Grained Access Control System for XML Documents. In: ACM TISSEC, pp. 169–202 (2002)Google Scholar
  13. 13.
    Deutsch, A., Tannen, V.: Containment of regular path expressions under integrity constraints. In: KRDB (2001)Google Scholar
  14. 14.
    Diao, Y., Fischer, P., Franklin, M., To, R.: YFilter: Efficient and scalable filtering of XML documents. In: Demo at ICDE, p. 341 (2002)Google Scholar
  15. 15.
    Fan, W., Libkin, L.: On XML integrity constraints in the presence of DTDs. In: Symposium on Principles of Database Systems, pp. 114–125 (2001)Google Scholar
  16. 16.
    Fernandez, M.F., Suciu, D.: Optimizing regular path expressions using graph schemas. In: ICDE, pp. 14–23 (1998)Google Scholar
  17. 17.
    Gabillon, A., Bruno, E.: Regulating Access to XML Documents. In: Working Conference on Database and Application Security, pp. 219–314 (2001)Google Scholar
  18. 18.
    Gong, L.: A Secure Identity-Based Capability System. In: Proc. IEEE Symposium on Security and Privacy, pp. 56–65 (1989)Google Scholar
  19. 19.
    Hors, A.L., Hegaret, P.L., Wood, L., Nicol, G., Robie, J., Champion, M., Byrne, S.: Document Object Model (DOM) Level 3 Core Specification (2004), Available at http://www.w3.org/TR/2004/PR-DOM-Level-3-Core-20040205
  20. 20.
    Jones, A.K., Lipton, R.J., Snyder, L.: A Linear Time Algorithm for Deciding Security. In: Proc. 17th Symposium on Foundations of Computer Science, pp. 33–41 (1976)Google Scholar
  21. 21.
    Kaushik, R., Bohannon, P., Naughton, J.F., Korth, H.F.: Covering indexes for branching path queries. In: ACM SIGMOD, pp. 133–144 (2002)Google Scholar
  22. 22.
    Kha, D.D., Yoshikawa, M., Uemura, S.: An XML Indexing Structure with Relative Region Coordinate. In: ICDE, pp. 313–320 (2001)Google Scholar
  23. 23.
    Kudo, M., Hada, S.: XML Document Security based on Provisional Authorization. In: ACM CCS, pp. 87–96 (2000)Google Scholar
  24. 24.
    Li, Q., Moon, B.: Indexing and Querying XML Data for Regular Path Expressions. In: VLDB, pp. 361–370 (2001)Google Scholar
  25. 25.
    Murata, M., Tozawa, A., Kudo, M., Hada, S.: XML Access Control Using Static Analysis. In: ACM CCS, pp. 73–84 (2003)Google Scholar
  26. 26.
    OASIS. OASIS Extensible Access Control Markup Language (XACML) (Febrauary 2003), http://www.oasis-open.org/committees/xacml/docs
  27. 27.
    Neven, F., Schwentick, T.: XPath containment in the presence of disjunction, DTDs, and variables. In: ICDT, pp. 315–329 (2003)Google Scholar
  28. 28.
    Qi, N., Kudo, M.: Access-condition-table-driven access control for XML databases. In: ESORICS, pp. 17–23 (2004)Google Scholar
  29. 29.
    Sandhu, R.S., Coyne, E.J., Feinstein, H.L., Youman, C.E.: Role-Based Access Control Models. IEEE Computer 29(2), 38–47 (1996)Google Scholar
  30. 30.
    Yu, T., Srivastava, D., Lakshmanan, L.V.S., Jagadish, H.V.: Compressed Accessibility Map: Efficient Access Control for XML. In: VLDB, pp. 478–489 (2002)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Naizhen Qi
    • 1
  • Michiharu Kudo
    • 1
  1. 1.IBM Research, Tokyo Research LaboratoryKanagawaJapan

Personalised recommendations