Skip to main content

A Framework for Orthology Assignment from Gene Rearrangement Data

  • Conference paper
Comparative Genomics (RCG 2005)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 3678))

Included in the following conference series:

Abstract

Gene rearrangements have been used successfully in phylogenetic reconstruction and comparative genomics, but usually under the assumption that all genomes have the same gene content and that no gene is duplicated. While these assumptions allow one to work with organellar genomes, they are too restrictive for nuclear genomes. The main challenge in handling more realistic data is how to deal with gene families, specifically, how to identify orthologs. While searching for orthologies is a common task in computational biology, it is usually done using sequence data. Sankoff first addressed the problem in 1999, introducing the notion of exemplar, but his approach uses an NP-hard optimization step to discard all but one member (the exemplar) of each gene family, losing much valuable information in the process. We approach the problem using all available data in the gene orders and gene families, provide an optimization framework in which to phrase the problem, and present some preliminary theoretical results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bader, D.A., Moret, B.M.E., Yan, M.: A fast linear-time algorithm for inversion distance with an experimental comparison. J. Comput. Biol. 8(5), 483–491 (2001)

    Article  Google Scholar 

  2. Blanchette, M., Kunisawa, T., Sankoff, D.: Gene order breakpoint evidence in animal mitochondrial phylogeny. J. Mol. Evol. 49, 193–203 (1999)

    Article  Google Scholar 

  3. Boore, J.L.: Phylogenies derived from rearrangements of the mitochondrial genome. In: Saitou, N. (ed.) Proc. Int’l Inst. for Advanced Studies Symp. on Biodiversity, Kyoto, Japan, pp. 9–20 (1999)

    Google Scholar 

  4. Boore, J.L., Brown, W.M.: Big trees from little genomes: Mitochondrial gene order as a phylogenetic tool. Curr. Opinion Genet. Dev. 8(6), 668–674 (1998)

    Article  Google Scholar 

  5. Boore, J.L., Collins, T., Stanton, D., Daehler, L., Brown, W.M.: Deducing the pattern of arthropod phylogeny from mitochondrial DNA rearrangements. Nature 376, 163–165 (1995)

    Article  Google Scholar 

  6. Bryant, D.: The complexity of calculating exemplar distances. In: Sankoff, D., Nadeau, J. (eds.) Comparative Genomics: Empirical and Analytical Approaches to Gene Order Dynamics, Map Alignment, and the Evolution of Gene Families, pp. 207–212. Kluwer Academic Publishers, Dordrecht (2000)

    Google Scholar 

  7. Caprara, A.: On the tightness of the alternating-cycle lower bound for sorting by reversals. J. Combin. Optimization 3, 149–182 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  8. Chen, X., Zheng, J., Fu, Z., Nan, P., Zhong, Y., Lonardi, S., Jiang, T.: Computing the assignment of orthologous genes via genome rearrangement. In: Proc. 3rd Asia Pacific Bioinformatics Conf. (APBC 2005), pp. 363–378. Imperial College Press, London (2005)

    Chapter  Google Scholar 

  9. Cosner, M.E., Jansen, R.K., Moret, B.M.E., Raubeson, L.A., Wang, L., Warnow, T., Wyman, S.K.: An empirical comparison of phylogenetic methods on chloroplast gene order data in Campanulaceae. In: Sankoff, D., Nadeau, J.H. (eds.) Comparative Genomics, pp. 99–122. Kluwer Academic Publishers, Dordrecht (2000)

    Google Scholar 

  10. Downie, S.R., Palmer, J.D.: Use of chloroplast DNA rearrangements in reconstructing plant phylogeny. In: Soltis, D.E., Soltis, P.S., Doyle, J.J. (eds.) Molecular Systematics of Plants, pp. 14–35. Chapman and Hall, New York (1992)

    Google Scholar 

  11. Earnest-DeYoung, J., Lerat, E., Moret, B.M.E.: Reversing gene erosion: reconstructing ancestral bacterial genomes from gene-content and gene-order data. In: Jonassen, I., Kim, J. (eds.) WABI 2004. LNCS (LNBI), vol. 3240, pp. 1–13. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  12. El-Mabrouk, N.: Genome rearrangement by reversals and insertions/deletions of contiguous segments. In: Giancarlo, R., Sankoff, D. (eds.) CPM 2000. LNCS, vol. 1848, pp. 222–234. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  13. El-Mabrouk, N.: Reconstructing an ancestral genome using minimum segments duplications and reversals. J. Comput. Syst. Sci. 65, 442–464 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  14. Hannenhalli, S., Pevzner, P.A.: Transforming cabbage into turnip (polynomial algorithm for sorting signed permutations by reversals). In: Proc. 27th Ann. ACM Symp. Theory of Comput. (STOC 1995), pp. 178–189. ACM Press, New York (1995)

    Chapter  Google Scholar 

  15. Larget, B., Simon, D.L., Kadane, J.B.: Bayesian phylogenetic inference from animal mitochondrial genome arrangements. J. Royal Stat. Soc. B 64(4), 681–694 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  16. Marron, M., Swenson, K.M., Moret, B.M.E.: Genomic distances under deletions and insertions. Theor. Computer Science 325(3), 347–360 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  17. Moret, B.M.E., Tang, J., Warnow, T.: Reconstructing phylogenies from gene-content and gene-order data. In: Gascuel, O. (ed.) Mathematics of Evolution and Phylogeny, pp. 321–352. Oxford University Press, UK (2005)

    Google Scholar 

  18. Thach Nguyen, C., Tay, Y.C., Zhang, L.: Divide-and-conquer approach for the exemplar breakpoint distance. Bioinformatics 21(10), 2171–2176 (2005)

    Article  Google Scholar 

  19. Sankoff, D.: Genome rearrangement with gene families. Bioinformatics 15(11), 990–917 (1999)

    Google Scholar 

  20. Sankoff, D., Blanchette, M.: The median problem for breakpoints in comparative genomics. In: Jiang, T., Lee, D.T. (eds.) COCOON 1997. LNCS, vol. 1276, pp. 251–264. Springer, Heidelberg (1997)

    Chapter  Google Scholar 

  21. Sankoff, D., Blanchette, M.: Multiple genome rearrangement and breakpoint phylogeny. J. Comput. Biol. 5, 555–570 (1998)

    Article  Google Scholar 

  22. Sankoff, D., Bryant, D., Deneault, M., Lang, B.F., Burger, G.: Early Eukaryote evolution based on mitochondrial gene order breakpoints. J. Comput. Biol. 7(3), 521–536 (2000)

    Article  Google Scholar 

  23. Sankoff, D., Nadeau, J. (eds.): Comparative Genomics: Empirical and Analytical Approaches to Gene Order Dynamics, Map Alignment, and the Evolution of Gene Families. Kluwer Academic Publishers, Dordrecht (2000)

    MATH  Google Scholar 

  24. Setubal, J.C., Meidanis, J.: Introduction to Computational Molecular Biology. PWS Publishers, Boston (1997)

    Google Scholar 

  25. Swenson, K.M., Marron, M., Earnest-DeYoung, J.V., Moret, B.M.E.: Approximating the true evolutionary distance between two genomes. In: Proc. 7th SIAM Workshop on Algorithm Engineering & Experiments (ALENEX 2005). SIAM Press, Philadelphia (2005)

    Google Scholar 

  26. Tang, J., Moret, B.M.E., Cui, L., de Pamphilis, C.W.: Phylogenetic reconstruction from arbitrary gene-order data. In: Proc. 4th IEEE Symp. on Bioinformatics and Bioengineering BIBE 2004, pp. 592–599. IEEE Press, Piscataway (2004)

    Chapter  Google Scholar 

  27. Tesler, G.: Efficient algorithms for multichromosomal genome rearrangements. J. Comput. Syst. Sci. 65(3), 587–609 (2002)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Swenson, K.M., Pattengale, N.D., Moret, B.M.E. (2005). A Framework for Orthology Assignment from Gene Rearrangement Data. In: McLysaght, A., Huson, D.H. (eds) Comparative Genomics. RCG 2005. Lecture Notes in Computer Science(), vol 3678. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11554714_14

Download citation

  • DOI: https://doi.org/10.1007/11554714_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-28932-6

  • Online ISBN: 978-3-540-31814-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics