Skip to main content

A Method of Controlling Household Electrical Appliance by Hand Motion in LonWorks

  • Conference paper
Knowledge-Based Intelligent Information and Engineering Systems (KES 2005)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 3684))

  • 1397 Accesses

Abstract

We investigate the method for many people to deliver home automation using the EMG that has been used for the sake of diagnosis of neurogenic and myogenic diseases. In order to compute characteristics of the EMG more easily, we use the well-known FFT. With characteristics obtained from FFT method, we propose the motion classifier for functional matching in network and to show the feasibility of home automation by the motion classifier, we have designed that basic household electrical appliance is run by operator’s motion in on-line.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kwantny, H.G., et al.: An application of signal processing techniques to the study of myoelectric signals. IEEE Trans. Biomed. Eng. BME-7, 303–312 (1970)

    Article  Google Scholar 

  2. Graupe, D., Cline, W.K.: Functional Separation of EMG Signals via ARMA Identification Methods for Prosthesis Control Purposes. IEEE Trans. Systems, Man and Cybernetics SMC-5, 252–259 (1975)

    Google Scholar 

  3. Lago, P., Jones, N.B.: Effect of motor-unit firing time statistics on e.m.g. spectra. Med. Biol. Eng. Comput. 15, 648–655 (1977)

    Article  Google Scholar 

  4. Le Fever, R.S., De Luca, C.J.: The contribution of individual motor units to the EMG power spectrum. In: Proc. 29th ACEMB, vol. 56 (1976)

    Google Scholar 

  5. Shwedyk, E., Balasubraminian, R., Scott, R.N.: A nonstationary model for the electromyogram. IEEE Trans. Biomed. Eng. BME-24, 417–424 (1977)

    Article  Google Scholar 

  6. Luca, C.J.: Physiology and Mathematics of Myoelectric Signals. IEEE Trans. Biomed. Eng. BME-26, 313–325 (1979)

    Article  Google Scholar 

  7. Sherif, M.H., Gregor, R.J., Lyman, J.: Effects of Load on Myoelectric Signals: The ARIMA Representation. IEEE Trans. Biomed. Eng. BME28, 411–416 (1981)

    Article  Google Scholar 

  8. Paiss, O., Inbar, G.F.: Autoregressive Modeling of Surface EMG and Its Spectrum with Application to Fatigue. IEEE Trans. Biomed. Eng. BME-34, 761–770 (1987)

    Article  Google Scholar 

  9. Sardis, G.N., Gootee, T.P.: EMG Pattern Analysis and Classification for a Prosthetic Arm. IEEE Trans. Biomed. Eng. BME-29, 403–412 (1982)

    Article  Google Scholar 

  10. Makhoul, J.: Linear Prediction: A Tutorial Review. Proceedings of the IEEE 63, 561–580 (1975)

    Article  Google Scholar 

  11. Shwedyk, E., Balasubramanian, R., Scott, R.N.: A Nonstationary Model for the Electromyogram. IEEE Trans. Biomed. Eng. BME-24, 417–424 (1977)

    Article  Google Scholar 

  12. Hefftner, G., Jaros, G.: The Electromyogram (EMG) as a Control Signal for Functional Neuromuscular Stimulation-Part I: Autoregressive Modeling as a Means of EMG Signature Discrimination. IEEE Trans. Biomed. Eng. BME-35, 230–237 (1988)

    Article  Google Scholar 

  13. Hannaford, B., Lehman, S.: Short Time Fourier Analysis of the Electromyogram: Fast Movements and Constant Contraction. IEEE Trans. Biomed. 33, 1173–1181 (1986)

    Article  Google Scholar 

  14. Prasad, G.V.K., Srinivasan, S., Patil, K.M.: A New DSP-Based Multichannel EMG Acquisition and Analysis System. Computers and Biomedical Research, 395–406 (1996)

    Google Scholar 

  15. Giuffrida, J.P., Cargo, P.E.: Reciprocal EMG Control of Elbow Extension by FES. IEEE. Neural Systems And Rehabilitation Eng. 9, 338–345 (2001)

    Article  Google Scholar 

  16. Nishkwa, D., et al.: On-line learning based electromyogram to forearm motion classifier with motor skill evaluation. JSME Journal, Series C 43(4), 906–915 (2000)

    Google Scholar 

  17. Fukuda, O., Tsuji, T., Kaneko, M., An, E.M.G.: Controlled Robotic Manipulator Using Neural Networks. In: Proc. Of IEEE Int. Workshop on Robot and Human Communication 1997, pp. 442–447 (1997)

    Google Scholar 

  18. Daniels, M.A.L., Worthingham, C.: Muscle Testing techniques of manual examination, 5th edn., pp. 122–129. W.B. Saunders Company, Philadelphia (1986)

    Google Scholar 

  19. Edward, F., Delagi, M.D.: Anatomic Guide for the Electromyographer, 2nd edn., pp. 34–63. CHARLES C THOMAS, Illinosis (1981)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Shim, IJ., Chang, KB., Park, GT. (2005). A Method of Controlling Household Electrical Appliance by Hand Motion in LonWorks. In: Khosla, R., Howlett, R.J., Jain, L.C. (eds) Knowledge-Based Intelligent Information and Engineering Systems. KES 2005. Lecture Notes in Computer Science(), vol 3684. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11554028_17

Download citation

  • DOI: https://doi.org/10.1007/11554028_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-28897-8

  • Online ISBN: 978-3-540-31997-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics