Robust Correspondenceless 3-D Iris Location for Immersive Environments

  • Emanuele Trucco
  • Tom Anderson
  • Marco Razeto
  • Spela Ivekovic
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3617)


We present a system locating the contour of an iris in space using robust active ellipse search and correspondenceless stereo. Robust iris location is the basis for gaze estimation and tracking, and, as such, an essential module for augmented and virtual reality environments. The system implements a robust active ellipse search based on a multi-scale contour detection model. The search is carried out by a simulated annealing algorithm, guaranteeing excellent performance in spite of heavy occlusions due to blinking, uncontrolled lighting, erratic target motion, and reflections of unpredictable scene elements. Stereo correspondence is avoided altogether by intersecting conjugate epipolar lines with the located ellipses. Experiments on synthetic and real images indicate very good performance of both location and reconstruction modules.


Stereo Pair Active Ellipse Virtual Reality Environment Epipolar Line View Synthesis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Baker, H.H., Malzbender, T., Bhatti, N., Tanguay, D., Sobel, I., Gelb, D., Goss, M., MacCormick, J., Kuasa, K., Cultbertson, W.B.: Computation and performance issues in Coliseum, an immersive videoconferencing system. In: Proc. 11th ACM Int. Conf. Multimedia, pp. 470–479 (2003)Google Scholar
  2. 2.
    Chang, N.L., Zakhor, A.: Constructing a multivalued representation for view synthesis. Int. Journ. of Comp. Vis. 45(2), 147–190 (2001)Google Scholar
  3. 3.
    Criminisi, A., Shotton, J., Blake, A., Torr, P.: Gaze manipulation for one-to-one teleconferencing. In: Proc. IEEE Int. Conf. on Comp. Vis., Nice, France (2003)Google Scholar
  4. 4.
    Daugman, J.: How iris recognition works. IEEE Trans. Circ. Sys. Vid. Tech. 14(1) (2004)Google Scholar
  5. 5.
    Duchowsky, A.T.: Eye tracking methodology. Springer, Heidelberg (2003)Google Scholar
  6. 6.
    Ivekovic, S., Trucco, E.: Dense wide-baseline disparities from conventional stereo for immersive videoconferencing. In: Proc. IAPR Int. Conf. Patt. Rec., Cambridge, UK (2004)Google Scholar
  7. 7.
    Isgro, F., Trucco, E., Kauff, P., Schreer, O.: 3-D image processing in the future of immersive media. IEEE Trans. Circ. Sys. Vid. Tech., special issue on immersive telecommunications 14(3), 288–303 (2004)Google Scholar
  8. 8.
    Isgro, F., Trucco, E., Xu, L.-Q.: Towards teleconferencing by view synthesis and large-baseline stereo. In: Proc. IEEE/IAPR Int. Conf. Image Anal. and Processing, Palermo, Italy, pp. 198–203 (2001)Google Scholar
  9. 9.
    Kepoor, R., Qi, Y., Picard, R.W.: Fully automatic upper facial action recognition. In: Int. Wksp. on Analysis and Modelling of Faces and Gestures, IEEE Int. Conf. on Comp. Vis., Nice, France (2003)Google Scholar
  10. 10.
    Ma, L., Tan, T., Wang, Y., Zhang, D.: Personal identification based on iris texture analysis. IEEE Trans. Patt. Anal. Mach. Intell., 25(12) (2003)Google Scholar
  11. 11.
    Morimoto, C.H., Koons, D., Amir, A., Flickner, M.: Pupil Detection and Tracking Using Multiple Light Sources. Image and Vision Computing 18(4), 331–335 (2000)CrossRefGoogle Scholar
  12. 12.
    Petrou, M., Kittler, J.: Optimal edge Detectors for Ramp Edges. IEEE Trans. PAtt. Anal. Mach. Intell.   13(5) (1991)Google Scholar
  13. 13.
    Razeto, M., Trucco, E.: Robust iris location in close-up images of the eye. Pattern Analysis and Application (2005) (to appear)Google Scholar
  14. 14.
    Richard, S.: Comparative experimental assessment of four optimisation algorithms applied to iris location. MSc Thesis, EECE-EPS, Heriot Watt University (2004)Google Scholar
  15. 15.
    Schmid, C., Zisserman, A.: The geometry and matching of lines and curves over multiple views. Int. Journ. Comp. Vis. 40(3), 199–233 (2000)zbMATHCrossRefGoogle Scholar
  16. 16.
    Shih, S.-W., Liu, J.: A novel approach to 3-D gaze tracking using stereo cameras. IEEE Trans. Sys. Man Cybern (Part B) 34(1), 234–245 (2004)CrossRefGoogle Scholar
  17. 17.
    Salamon, P., Sibani, P., Frost, R.: Facts, Conjectures and Improvements for Simulated Annealing. SIAM, Philadelphia (2002)CrossRefGoogle Scholar
  18. 18.
    Trucco, E., Plakas, K., Brandenburg, N., Kauff, P., Karl, M., Schreer, O.: Real-time disparity analysis for immersive 3-D videoconferencing. In: Proc. IEEE ICCV Workshop on Video Registration, Vancouver, Canada (2001)Google Scholar
  19. 19.
    Trucco, E., Razeto, M.: Hausdorff iconic matching with applications to 3-D videoconferencing. In: Proc. WIAMIS, London, UK, pp. 417–422 (2003)Google Scholar
  20. 20.
    Trucco, E., Verri, A.: Introductory Techniques for 3-D Computer Vision. Prentice-Hall, Englewood Cliffs (1998)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Emanuele Trucco
    • 1
  • Tom Anderson
    • 1
  • Marco Razeto
    • 1
  • Spela Ivekovic
    • 1
  1. 1.EECE-EPSHeriot Watt UniversityRiccarton, EdinburghUK

Personalised recommendations