Skip to main content

Periodic Motion Control by Modulating CPG Parameters Based on Time-Series Recognition

  • Conference paper
Advances in Artificial Life (ECAL 2005)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 3630))

Included in the following conference series:

Abstract

This paper proposes a computational motion control model of a redundant manipulator inspired by biological brain-motor systems. The proposed model consists of two processing layers dubbed “CPG” and “Dynamical memory”. Likewise biological central pattern generators in spinal cord, the CPG layer plays a role in generating torque patterns for realizing periodic motions. On the contrary, the higher brain model, i.e. the Dynamical memory layer is a time-series pattern discriminator implemented by a recurrent neural networks (RNN). By associating time-series of the system states with optimized CPG parameters, the RNN can predictively modulate the generating torque patterns by recalling well-suited CPG parameters according to the sensorimotor time-series.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Grillner, S.: Neurobiological bases of rhythmic motor acts in vertebrates. Science 228, 143–149 (1985)

    Article  Google Scholar 

  2. Yanagihara, D., Udo, M., Kondo, I., Yoshida, T.: A new learning paradigm: adaptive changes in interlimb coordination during perturbed locomotion in decerebrate cats. Neurosci. Res. 18, 241–244 (1993)

    Article  Google Scholar 

  3. Kondo, T., Somei, T., Ito, K.: A predictive constraints selection model for periodic motion pattern generation. In: Proceedings of 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2004), pp. 975–980 (2004)

    Google Scholar 

  4. Matsuoka, K.: Mechanisms of frequence and pattern control in the neural rhythm generators. Biological Cybernetics 56, 345–353 (1987)

    Article  Google Scholar 

  5. Taga, G.: A model of the neuro-musculo-skeletal system for human locomotion. Biological Cybernetics 73(1), 97–111 (1995)

    Article  MATH  Google Scholar 

  6. Williamson, M.: Neural control of rhythmic arm movements. Neural Networks 11, 1379–1394 (1998)

    Article  Google Scholar 

  7. Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P.: Optimization by simulated annealing. Science 220(4598), 671–680 (1983)

    Article  MathSciNet  Google Scholar 

  8. Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Parallel Distributed Processing, p. 1. MIT Press, Cambridge (1988)

    Google Scholar 

  9. Smith, R.: Open dynamics engine v0.5 user guide (2004), http://ode.org/

  10. Wolpert, D.M., Kawato, M.: Multiple paired forward and inverse models for motor control. Neural Networks 11, 1317–1329 (1998)

    Article  Google Scholar 

  11. Tani, J., Ito, M., Sugita, Y.: Self-organization of distributedly represented multiple behavior schemata in a mirror system: review of robot experiments using RNNPB. Neural Networks 17, 1273–1289 (2004)

    Article  Google Scholar 

  12. Pfeifer, R., Scheier, C. (eds.): Understanding Intelligence. MIT Press, Cambridge (1999)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kondo, T., Ito, K. (2005). Periodic Motion Control by Modulating CPG Parameters Based on Time-Series Recognition. In: Capcarrère, M.S., Freitas, A.A., Bentley, P.J., Johnson, C.G., Timmis, J. (eds) Advances in Artificial Life. ECAL 2005. Lecture Notes in Computer Science(), vol 3630. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11553090_91

Download citation

  • DOI: https://doi.org/10.1007/11553090_91

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-28848-0

  • Online ISBN: 978-3-540-31816-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics