Skip to main content

Explicit Collision Simulation of Chemical Reactions in a Graph Based Artificial Chemistry

  • Conference paper
Advances in Artificial Life (ECAL 2005)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 3630))

Included in the following conference series:

Abstract

A Toy Model of an artificial chemistry that treats molecules as graphs was implemented based on a simple Extended Hückel Theory method. Here we describe an extension of the model that models chemical reactions as the result of “collisions”. In order to avoid a possible bias arising from prescribed generic reaction mechanisms, the reactions are simulated in a way that treats the formation and breakage of individual chemical bonds as elementary operations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bagley, R.J., Farmer, J.D.: Spontaneous emergence of a metabolism. In: Langton, C.G., Taylor, C., Farmer, J.D., Rasmussen, S. (eds.) Artificial Life II, Redwood City, CA. Santa Fe Institute Studies in the Sciences of Complexity, pp. 93–141. Addison-Wesley, Reading (1992)

    Google Scholar 

  2. Banzhaf, W., Dittrich, P., Eller, B.: Self-organization in a system of binary strings with spatial interactions. Physica D 125, 85–104 (1999)

    Article  Google Scholar 

  3. Benkö, G., Flamm, C., Stadler, P.F.: Generic properties of chemical networks: Artificial chemistry based on graph rewriting. In: Banzhaf, W., Christaller, T., Dittrich, P., Kim, J.T., Ziegler, J. (eds.) ECAL 2003. LNCS (LNAI), vol. 2801, pp. 10–20. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  4. Benkö, G., Flamm, C., Stadler, P.F.: A graph-based toy model of chemistry. J. Chem. Inf. Comput. Sci. 43, 1085–1093 (2003)

    Google Scholar 

  5. Dittrich, P., Ziegler, J., Banzhaf, W.: Artificial chemistries — a review. Artificial Life 7, 225–275 (2001)

    Article  Google Scholar 

  6. Dugundji, J., Ugi, I.: Theory of the be- and r-matrices. Top. Curr. Chem. 39, 19–29 (1973)

    Google Scholar 

  7. Fleming, I.: Frontier Orbitals and Organic Chemical Reactions. John Wiley, Chichester (1976)

    Google Scholar 

  8. Fontana, W.: Algorithmic chemistry. In: Langton, C.G., Taylor, C., Farmer, J.D., Rasmussen, S. (eds.) Artificial Life II, Redwood City, CA, pp. 159–210. Addison-Wesley, Reading (1992)

    Google Scholar 

  9. Gilheany, D.J.: No d orbitals but walsh diagrams and maybe banana bonds: Chemical bonding in phosphines, phosphine oxides and phosphonium ylides. Chem. Rev. 94, 1339–1374 (1994)

    Article  Google Scholar 

  10. Gillespie, D.T.: Exact stochastic simulation of coupled chemical reactions. J. Phys. Chem. 81, 2340–2361 (1977)

    Article  Google Scholar 

  11. Gillespie, R.J., Nyholm, R.S.: Inorganic Stereochemistry. Quart. Rev. Chem. Soc. 11, 339–380 (1957)

    Article  Google Scholar 

  12. Hoffmann, R.: An Extended Hückel Theory. I. Hydrocarbons. J. Chem. Phys. 39(6), 1397–1412 (1963)

    Article  Google Scholar 

  13. Klopman, G.: Chemical reactivity and the concept of charge- and frontier-controlled reactions. J. Am. Chem. Soc. 90, 223–243 (1968)

    Article  Google Scholar 

  14. Klopman, G.: Chemical Reactivity and Reaction Paths. Krieger (1974)

    Google Scholar 

  15. McCaskill, J.S., Niemann, U.: Graph replacement chemistry for DNA processing. In: Condon, A., Rozenberg, G. (eds.) DNA 2000. LNCS, vol. 2054, pp. 103–116. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  16. Nowak, G.: Common-sense reasoning cast over D-U model in simulation of chemical reactions. Int. J. Quantum Chem. 84(2), 282–289 (2001)

    Article  Google Scholar 

  17. Rauk, A.: Orbital Interaction Theory of Organic Chemistry. Wiley Interscience, Hoboken (2000)

    Book  Google Scholar 

  18. Salem, L.: Intermolecular orbital theory of the interaction between conjugated systems. I. General theory; II. Thermal and photochemical calculations. J. Am. Chem. Soc. 90, 543–552 (1968)

    Article  Google Scholar 

  19. Thürk, M.: Ein Modell zur Selbstorganisation von Automatenalgorithmen zum Studium molekularer Evolution. PhD thesis, Universität Jena, Germany, PhD Thesis (1993)

    Google Scholar 

  20. Vollhardt, K.P.C., Schore, N.: Organic Chemistry, 4th edn. W. H. Freeman, New York (2002)

    Google Scholar 

  21. Weininger, D.: SMILES, a chemical language and information system. J. Chem. Inf. Comput. Sci. 28, 31–36 (1988)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Benkö, G., Flamm, C., Stadler, P.F. (2005). Explicit Collision Simulation of Chemical Reactions in a Graph Based Artificial Chemistry. In: Capcarrère, M.S., Freitas, A.A., Bentley, P.J., Johnson, C.G., Timmis, J. (eds) Advances in Artificial Life. ECAL 2005. Lecture Notes in Computer Science(), vol 3630. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11553090_73

Download citation

  • DOI: https://doi.org/10.1007/11553090_73

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-28848-0

  • Online ISBN: 978-3-540-31816-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics