Skip to main content

Artificial Metabolic System: An Evolutionary Model for Community Organization in Metabolic Networks

  • Conference paper
Advances in Artificial Life (ECAL 2005)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 3630))

Included in the following conference series:

Abstract

Recent studies of complex networks offer new methods for characterizing large scale of networks and provide new insights on how such networks are developed. In particular, researchers focused on biological networks such as gene regulatory systems, protein interactions and metabolic pathways in order to understand how these elemental reactions are integrated as an organism. Although various statistical features of network structures, such as scale-free or small-world, have been studied to approach underlying principles of network organization, more detailed analysis on network properties is required to understand their functions.

The community finding algorithm proposed by Girvan and Newman provides another useful technique for investigating topological structures of large networks. Applying this method to metabolic networks, we found that behavior like that of Zipf’s law of the distribution of community size is shared very generally among a wide range of organisms. With the aim of realizing how this property is achieved, we present a new evolutionary model of metabolic reactions based on artificial chemistry.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agrawal, H.: Extreme self-organization in networks constructed from gene expression data. Phys. Rev. Lett. 89(26), 268702 (2002)

    Article  Google Scholar 

  2. Arenas, A., Danon, L., Díaz-Guilera, A., Gleiser, P.M., Guimerà, R.: Community analysis in social networks. Eur. Phys. J. B 38, 373–380 (2004)

    Article  Google Scholar 

  3. Arita, M.: The metabolic world of Escherichia Coli is not small. Proc. Natl. Acad. Sci. USA 101(6), 1543–1547 (2004)

    Article  Google Scholar 

  4. Barabási, A.L., Albert, R.: Emergence of scaling in random networks. Science 286, 509–512 (1999)

    Article  MathSciNet  Google Scholar 

  5. Clauset, A., Newman, M.E.J., Moore, C.: Finding community structure in very large networks. Phys. Rev. E 70, 66111 (2004)

    Article  Google Scholar 

  6. Featherstone, D.E., Broadie, K.: Wrestling with pleiotropy: genomic and topological analysis of the yeast gene expression network. BioEssays 24(3), 267–274 (2002)

    Article  Google Scholar 

  7. Girvan, M., Newman, M.E.J.: Community structure in social and biological networks. Proc. Natl. Acad. Sci. USA 99(12), 7821–7826 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  8. Holme, P., Huss, M., Jeong, H.: Subnetwork hierarchies of biochemical pathways. Bioinformatics 19(4), 532–538 (2003)

    Article  Google Scholar 

  9. Horowitz, N.H.: On the evolution of biochemical syntheses. Proc. Natl. Acad. Sci. USA 31, 153–157 (1945)

    Article  Google Scholar 

  10. Jensen, R.A.: Enzyme recruitment in evolution of new function. Annu. Rev. Microbiol. 30, 409–425 (1976)

    Article  Google Scholar 

  11. Jeong, H., Tombor, B., Albert, R., Oltvai, Z.N., Barabási, A.L.: The large-scale organization of metabolic networks. Nature 407(6804), 651–654 (2000)

    Article  Google Scholar 

  12. Light, S., Kraulis, P.: Network analysis of metabolic enzyme evolution in Escherichia Coli. BMC Bioinformatics 5(1), 15 (2004)

    Article  Google Scholar 

  13. Pastor-Satorras, R., Smith, E., Sole, R.: Evolving protein interaction networks through gene duplication. J. Theor. Biol. 222, 199–210 (2003)

    Article  MathSciNet  Google Scholar 

  14. di Fenizio, P.S., Dittrich, P., Banzhaf, W.: Spontaneous formation of proto-cells in an universal artificial chemistry on a planar graph. In: Kelemen, J., Sosík, P. (eds.) ECAL 2001. LNCS (LNAI), vol. 2159, pp. 206–215. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  15. Strogatz, S.H.: Exploring complex networks. Nature 410(6825), 268–276 (2001)

    Article  Google Scholar 

  16. Teichmann, S.A., Rison, S.C., Thornton, J.M., Riley, M., Gough, J., Chothia, C.: The evolution and structural anatomy of the small molecule metabolic pathways in Escherichia Coli. J. Mol. Biol. 311(4), 693–708 (2001)

    Article  Google Scholar 

  17. Vázquez, A.: Growing network with local rules: preferential attachment, clustering hierarchy, and degree correlations. Phys. Rev. E 67, 56104 (2003)

    Article  Google Scholar 

  18. Wagner, A.: The yeast protein interaction network evolves rapidly and contains few redundant duplicate genes. Mol. Biol. Evol. 18(7), 1283–1292 (2001)

    Google Scholar 

  19. Wagner, A., Fell, D.A.: The small world inside large metabolic networks. Proc. Roy. Soc. Lond Ser. B 268(1478), 1803–1810 (2001)

    Article  Google Scholar 

  20. Watts, D.J., Strogatz, S.H.: Collective dynamics of ’small-world’ networks. Nature 393(6684), 440–442 (1998)

    Article  Google Scholar 

  21. Wuchty, S.: Scale-free behavior in protein domain networks. Mol. Biol. Evol. 18(9), 1694–1702 (2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ono, N., Fujiwara, Y., Yuta, K. (2005). Artificial Metabolic System: An Evolutionary Model for Community Organization in Metabolic Networks. In: Capcarrère, M.S., Freitas, A.A., Bentley, P.J., Johnson, C.G., Timmis, J. (eds) Advances in Artificial Life. ECAL 2005. Lecture Notes in Computer Science(), vol 3630. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11553090_72

Download citation

  • DOI: https://doi.org/10.1007/11553090_72

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-28848-0

  • Online ISBN: 978-3-540-31816-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics