Skip to main content

Simulating Evolution with a Computational Model of Embryogeny: Obtaining Robustness from Evolved Individuals

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 3630))

Abstract

An evolutionary system is presented which employs an embryogeny model to evolve phenotypes in the form of layout of cells in specific patterns and shapes. It is shown that evolved phenotypes exhibit robustness to damage. How and why these traits appear is discussed and it is conjectured that it is the result of the effects of a complex mapping upon simulated evolution.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alberts, B., Johnson, A., Lewis, J., Raff, M., Roberts, K., Walter, P.: Molecular Biology of the Cell, 3rd edn. Garland, New York (1994)

    Google Scholar 

  2. Altenberg, L.: Genome Growth and the Evolution of the Genotype-Phenotype Map. In: Banzhaf, W., Eckman, F.H. (eds.) Evolution as a Computational Process 1992. LNCS, vol. 899, pp. 205–259. Springer, Heidelberg (1995)

    Google Scholar 

  3. Bowers, C.P.: Evolving Robust Solutions with a Computational Model of Embryogeny. In: Rossiter, J.M., Martin, T.P. (eds.) Proceedings of the UK Workshop on Computational Intelligence: UKCI 2003, pp. 181–188. University of Bristol, Bristol (2003)

    Google Scholar 

  4. Bowers, C.P., Bullinaria, J.A.: Embryological Modelling of the Evolution of Neural Architecture. In: Cangelosi, A., Bugmann, G., Borisyuk, R. (eds.) Proceedings of the Ninth Neural Computational and Psychology Workshop. World Scientific, Singapore (2004)

    Google Scholar 

  5. Harvey, I.: Artificial Evolution for Real World Problems. In: Gomi, T. (ed.) Evolutionary Robotics: From Intelligent Robots to Artificial Life: ER 1997, pp. 127–149. AAI Books (1997)

    Google Scholar 

  6. Kumar, S., Bentley, P.: Computational Embryogeny: Past, Present and Future. In: Ghosh, Tsutsui (eds.) Advances in Evolutionary Computing, Theory and Applications, pp. 461–478. Springer, Heidelberg (2003)

    Google Scholar 

  7. Liu, H., Miller, J.F., Tyrell, A.M.: An intrinsic robust transient fault-tolerant development model for digital systems. In: Miller, J. (ed.) WORLDS Workshop, The Genetic and Evolutionary Computation Conference: GECCO 2004 (2004)

    Google Scholar 

  8. Mange, D., Sipper, M., Marchal, P.: Embryonic electronics. Biosystems 51(3), 145–152 (1999)

    Article  Google Scholar 

  9. Miller, J.F., Banzhaf, W.: Evolving the Program for a Cell: From French Flags to Boolean Circuits. In: Kumar, S., Bentley, P. (eds.) On Growth, Form and Computers. Academic Press, London (2003)

    Google Scholar 

  10. Nowostawski, M., Poli, R.: Parallel Genetic Algorithm Taxonomy. In: Jain, L.C. (ed.) Proceeding of the Third International Conference on Knowledge Based Intelligent Information Engineering Systems: KES 1999, Adalaide, pp. 88–92. IEEE, Los Alamitos (1999)

    Google Scholar 

  11. Ortega, C., Mange, D., Smith, S.L., Tyrrell, A.M.: Embryonics: A bio-inspired cellular architecture with fault-tolerant properties. Genetic Programming and Evolvable Machines 1(3), 187–215 (2000)

    Article  MATH  Google Scholar 

  12. Vassilev, V.K., Miller, J.F.: Scalability Problems of Digital Circuit Evolution. In: Keymeulen, D., Lohn, J., Stoica, A., Colombano, S. (eds.) Proceedings of the 2nd NASA/DOD Workshop on Evolvable Hardware, pp. 55–64. IEEE Computer Society Press, Los Alamitos (2000)

    Chapter  Google Scholar 

  13. Verlet, L.: Computer Experiments on Classical Fluids I. Thermodynamical Properties of Lennard-Jones Molecules. Phys. Rev. 159(1), 98–103 (1967)

    Article  Google Scholar 

  14. Yao, X.: Evolving artificial neural networks. Proceedings of the IEEE 87(9), 1423–1447 (1999)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bowers, C.P. (2005). Simulating Evolution with a Computational Model of Embryogeny: Obtaining Robustness from Evolved Individuals. In: Capcarrère, M.S., Freitas, A.A., Bentley, P.J., Johnson, C.G., Timmis, J. (eds) Advances in Artificial Life. ECAL 2005. Lecture Notes in Computer Science(), vol 3630. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11553090_16

Download citation

  • DOI: https://doi.org/10.1007/11553090_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-28848-0

  • Online ISBN: 978-3-540-31816-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics