Advertisement

Multimodal Biometrics for Voice and Handwriting

  • Claus Vielhauer
  • Tobias Scheidat
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3677)

Abstract

In this paper a novel fusion approach for combining voice and online signature verification will be introduced. While the matching algorithm for the speaker identification modality is based on a single Gaussian Mixture Model (GMM) algorithm, the signature verification strategy is based on four different distance measurement functions, combined by multialgorithmic fusion. Together with a feature extraction method presented in our earlier work, the Biometric Hash algorithm, they result in four verification experts for the handwriting subsystem. The fusion results of our new subsystem on the multimodal level are elaborated by enhancements to a system, which was previously introduced by us for biometric authentication in HCI scenarios. Tests have been performed on identical data sets for the original and the enhanced system and the first results presented in this paper show that an increase of recognition accuracy can be achieved by our new multialgorithmic approach for the handwriting modality.

Keywords

biometrics combination distance fusion handwriting identification matching score level multialgorithmic multimodal voice 

References

  1. 1.
    Vielhauer, C., Steinmetz, R., Mayerhöfer, A.: Biometric Hash based on Statistical Features of Online Signature. In: Proceedings of the International Conference on Pattern Recognition (ICPR), Conference on Pattern Recognition (ICPR), August, Quebec City, Canada, vol. 1, pp. 123–126 (2002) ISBN 0-7695-1696-3Google Scholar
  2. 2.
    Vielhauer, C., Schimke, S., Thanassis, V., Stylianou, Y.: Fusion Strategies for Speech and Handwriting Modalities in HCI. In: SPIE Proceedings - Electronic Imaging, Security and Watermarking of Multimedia Contents VII (2005) (to appear)Google Scholar
  3. 3.
    Jain, A.K., Ross, A.: Multibiometric Systems. Communications Of The ACM 47(1), 34–40 (2004)CrossRefGoogle Scholar
  4. 4.
    Ly-Van, B., Blouet, R., Renouard, S., Garcia-Salicetti, S., Dorizzi, B., Chollet, G.: Signature with Text-Dependent and Text-Independent Speech for Robust Identity Verification. In: Proceedings, IEEE Workshop on Multimodal User Authentication, pp. 13–18 (2003)Google Scholar
  5. 5.
    Czyz, J., Kittler, J., Vandendorpe, L.: Combining face verification experts. In: Proceedings of ICPR 2002 – Intl. Conference on Pattern Recognition, Quebec, Canada (2002)Google Scholar
  6. 6.
    Scheidat, T.: Fusion von Klassifikationsverfahren für handschriftbasierte Benutzerauthentifikation, M. Sc. Thesis, University Magdeburg (2005) (in German)Google Scholar
  7. 7.
    Vielhauer, C., Scheidat, T.: Fusion von biometrischen Verfahren zur Benutzerauthentifikation. In: Horster, P. (ed.) D-A-CH Security 2005 – Bestandsaufnahme, Konzepte, Anwendungen, pp. 82–97 (2005) (in German) ISBN 3-00-015548-1Google Scholar
  8. 8.
    Vielhauer, C.: Biometric User Authentication for IT Security: From Fundamentals to Handwriting. Springer, New York (2006) (to appear)Google Scholar

Copyright information

© IFIP International Federation for Information Processing 2005

Authors and Affiliations

  • Claus Vielhauer
    • 1
  • Tobias Scheidat
    • 1
  1. 1.School of Computer Science, Department of Technical and Business Information Systems, Advanced Multimedia and Security LabOtto-von-Guericke University MagdeburgMagdeburgGermany

Personalised recommendations