Non-interactive Watermark Detection for a Correlation-Based Watermarking Scheme

  • André Adelsbach
  • Markus Rohe
  • Ahmad-Reza Sadeghi
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3677)


Cryptographic techniques have been deployed to securely prove the presence of a watermark in stego-data without disclosing any security critical information to the detecting party.

This paper presents a detailed practical construction and implementation results of a correlation-based non-blind watermarking scheme in the non-interactive zero-knowledge setting. We extensively describe the modifications and hurdles that had to be overcome to transform a well-known watermarking scheme – whose general detection principle is applied in many other known schemes – into a two-party setting where the critical detection input, i.e. the watermark vector and the original data is cryptographically concealed from the verifying party using a commitment scheme. Our prototype implementation is very efficient and is an evidence of the practical feasibility of zero-knowledge watermark detection.


Watermark detection implementation zero-knowledge 


  1. 1.
    Adelsbach, A., Sadeghi, A.R.: Zero-knowledge watermark detection and proof of ownership. In: IHW 2001. LNCS, vol. 2137, pp. 273–288. Springer, Germany (2001)Google Scholar
  2. 2.
    Adelsbach, A., Katzenbeisser, S., Sadeghi, A.R.: Watermark detection with zero-knowledge disclosure. ACM Multimedia Systems Journal, Special Issue on Multimedia Security 9, 266–278 (2003)CrossRefGoogle Scholar
  3. 3.
    Cox, I., Kilian, J., Leighton, T., Shamoon, T.: A secure, robust watermark for multimedia. In: Anderson, R. (ed.) IH 1996. LNCS, vol. 1174, pp. 175–190. Springer, Heidelberg (1996)CrossRefGoogle Scholar
  4. 4.
    Hernandez, J., Perez-Gonzales, F.: Statistical analysis of watermarking schemes for copyright protection of images. Proceedings of the IEEE 87, 1142–1166 (1999)CrossRefGoogle Scholar
  5. 5.
    Damgård, I.: Commitment schemes and zero-knowledge protocols. In: Damgård, I.B. (ed.) EEF School 1998. LNCS, vol. 1561, pp. 63–86. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  6. 6.
    Damgård, I., Fujisaki, E.: A statistically-hiding integer commitment scheme based on groups with hidden order. In: Zheng, Y. (ed.) ASIACRYPT 2002. LNCS, vol. 2501, pp. 125–142. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  7. 7.
    Boudot, F.: Efficient proofs that a committed number lies in an interval. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 431–444. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  8. 8.
    Lipmaa, H.: On diophantine complexity and statistical zero-knowledge arguments. In: Laih, C.-S. (ed.) ASIACRYPT 2003. LNCS, vol. 2894, pp. 398–415. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  9. 9.
    Bellare, M., Rogaway, P.: Random oracles are practical: A paradigm for designing efficient protocols. In: Proceedings of the ACM CCS, pp. 62–73. ACM Press, New York (1993)Google Scholar
  10. 10.
    Rabin, M.O., Shallit, J.O.: Randomized Algorithms in Number Theory. Communications on Pure and Applied Mathematics 39, S239– S256 (1986)Google Scholar
  11. 11.
    Piva, A., Barni, M., Bartolini, F., Cappellini, V.: Dct-based watermark recovering without resorting to the uncorrupted original image. In: Proceedings of ICIP 1997, Santa Barbara, CA, USA, October 26-29, vol. I, pp. 520–523. IEEE, Los Alamitos (1997)Google Scholar
  12. 12.
    Adelsbach, A., Rohe, M., Sadeghi, A.R.: Full version of this paper (2005),
  13. 13.
    Menezes, A.J., van Oorschot, P.C., Vanstone, S.A.: Handbook of Applied Cryptography. CRC Press series on discrete mathematics and its applications. CRC Press, Boca Raton (1997) ISBN 0-8493-8523-7zbMATHGoogle Scholar

Copyright information

© IFIP International Federation for Information Processing 2005

Authors and Affiliations

  • André Adelsbach
    • 1
  • Markus Rohe
    • 1
  • Ahmad-Reza Sadeghi
    • 1
  1. 1.Horst Görtz Institute for IT SecurityRuhr-Universität BochumGermany

Personalised recommendations