Advertisement

Fast Contract Signing with Batch Oblivious Transfer

  • L’ubica Staneková
  • Martin Stanek
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3677)

Abstract

Oblivious transfer protocol is a basic building block of various cryptographic constructions. We propose a novel protocol – batch oblivious transfer. It allows efficient computation of multiple instances of oblivious transfer protocols. We apply this protocol to improve the fast simultaneous contract signing protocol, recently proposed in [11], which gains its speed from computation of time-consuming operations in advance. Using batch oblivious transfer, a better efficiency can be achieved.

Keywords

Hash Function Random Oracle Cryptographic Protocol Chinese Remainder Theorem Security Proof 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Bellare, M., Garay, J., Rabin, T.: Fast batch verification for modular exponentiation and digital signatures. In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 236–250. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  2. 2.
    Bellare, M., Rogaway, P.: Random Oracles are Practical: a Paradigm for Designing Efficient Protocols. In: 1st ACM Conference on Computer and Communication Security, pp. 62–73. ACM Press, New York (1993)Google Scholar
  3. 3.
    Canetti, R.: Security and Composition of Multiparty Cryptographic Protocols. Journal of Cryptology 13(1), 143–202 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Even, S., Goldreich, O., Lempel, A.: A Randomized Protocol for Signing Contracts. In: Advances in Cryptology: Proceedings of Crypto 1982, pp. 205–210. Plenum Publishing, New York (1982)Google Scholar
  5. 5.
    Fiat, A.: Batch RSA. In: Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 175–185. Springer, Heidelberg (1990)Google Scholar
  6. 6.
    Garay, J., Jakobsson, M., MacKenzie, P.: Abuse-Free Optimistic Contract Signing. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 449–466. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  7. 7.
    Garay, J., Pomerance, C.: Timed Fair Exchange of Standard Signatures. In: Wright, R.N. (ed.) FC 2003. LNCS, vol. 2742, pp. 190–207. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  8. 8.
    Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game – a completeness theorem for protocols with honest majority. In: 19th ACM Symposium on the Theory of Computing, pp. 218–229. ACM Press, New York (1987)Google Scholar
  9. 9.
    Juels, A., Szydlo, M.: A Two-Server Sealed-Bid Auction Protocol. In: Blaze, M. (ed.) FC 2002. LNCS, vol. 2357. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  10. 10.
    Koblitz, N., Menezes, A.: Another Look at “Provable Security”, Cryptology ePrint Archive, Report 2004/152 (2004), http://eprint.iacr.org/
  11. 11.
    Liskova, L., Stanek, M.: Efficient Simultaneous Contract Signing. In: 19th International Conference on Information Security (SEC 2004), 18th IFIP Word Computer Congress, pp. 441–455. Kluwer Academic Publishers, Dordrecht (2004)Google Scholar
  12. 12.
    Naor, M., Pinkas, B., Sumner, R.: Privacy preserving auctions and mechanism design. In: 1st ACM Conference on Electronic Commerce, pp. 129–139. ACM Press, New York (1999)CrossRefGoogle Scholar
  13. 13.
    Naor, M., Pinkas, B.: Efficient oblivious transfer protocols. In: 12th Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 448–457 (2001)Google Scholar

Copyright information

© IFIP International Federation for Information Processing 2005

Authors and Affiliations

  • L’ubica Staneková
    • 1
  • Martin Stanek
    • 2
  1. 1.Department of MathematicsSlovak University of TechnologyBratislavaSlovakia
  2. 2.Department of Computer ScienceComenius UniversityBratislavaSlovakia

Personalised recommendations