Skip to main content

Use of Input Deformations with Brownian Motion Filters for Discontinuous Regression

  • Conference paper
Pattern Recognition and Data Mining (ICAPR 2005)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 3686))

Included in the following conference series:

  • 1821 Accesses

Abstract

Bayesian Gaussian processes are known as ‘smoothing devices’ and in the case of n data points they require O(n 2)... O(n 3) number of multiplications in order to perform a regression analysis. In this work we consider one-dimensional regression with Wiener-Lévy (Brownian motion) covariance functions. We indicate that they require only O(n) number of multiplications and show how one can utilize input deformations in order to define a much broader class of efficient covariance functions suitable for discontinuity-preserving filtering. An example of the selective smoothing is presented which shows that regression with Brownian motion filters outperforms or improves nonlinear diffusion filtering especially when observations are contaminated with noise of larger variance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D’Almeida, F.: Nonlinear diffusion toolbox. MATLAB Central

    Google Scholar 

  2. Fang, Q., Tsuchiya, T., Yamamoto, T.: Finite difference, finite element and finite volume methods applied to two-point boundary value problems. Journal of Computational and Applied Mathematics 139, 9–19 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  3. Gelfand, I.M., Fomin, S.V.: Calculus of Variations. Prentice-Hall, Englewood Cliffs (1963)

    Google Scholar 

  4. Gibbs, M.N.: Bayesian Gaussian Processes for Regression and Classification. Ph.d. thesis, Cambridge University (1997)

    Google Scholar 

  5. Kac, M.: Random walk and the theory of Brownian motion. The American Mathematical Monthly 54(7), 369–391 (1947)

    Article  MATH  MathSciNet  Google Scholar 

  6. De Nicolao, G., Ferrari-Trecate, G.: Regularization networks: Fast weight calculation via Kalman filtering. IEEE Trans. on Neural Networks Vol. 12(2), 228–235 (2001)

    Article  Google Scholar 

  7. Rasmussen, C.E.: Evaluation of Gaussian Processes and Other Methods for Non-linear Regression. Ph.d. thesis, The University of Toronto (1996)

    Google Scholar 

  8. Shreve, S.E.: Stochastic Calculus for Finance II: Continuous Time Models. Springer, Heidelberg (2000)

    Google Scholar 

  9. Skilling, J.: Bayesian numerical analysis. In: Physics and Probability, pp. 207–221. Cambridge University Press, Cambridge (1993)

    Chapter  Google Scholar 

  10. Weickert, J., ter Haar Romeny, B.M., Viergever, M.A.: Efficient and reliable schemes for nonlinear diffusion filtering. IEEE Trans. on Image Processing 7(3), 398–410 (1998)

    Article  Google Scholar 

  11. Yamamoto, T.: Inversion formulas for tridiagonal matrices with applications to boundary value problems. Numer. Funct. Anal. and Optimiz. 22(3 and 4), 357–385 (2001)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Girdziušas, R., Laaksonen, J. (2005). Use of Input Deformations with Brownian Motion Filters for Discontinuous Regression. In: Singh, S., Singh, M., Apte, C., Perner, P. (eds) Pattern Recognition and Data Mining. ICAPR 2005. Lecture Notes in Computer Science, vol 3686. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11551188_24

Download citation

  • DOI: https://doi.org/10.1007/11551188_24

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-28757-5

  • Online ISBN: 978-3-540-28758-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics