Advertisement

Dynamics of Cortical Columns – Self-organization of Receptive Fields

  • Jörg Lücke
  • Jan D. Bouecke
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3696)

Abstract

We present a system of differential equations which abstractly models neural dynamics and synaptic plasticity of a cortical macrocolumn. The equations assume inhibitory coupling between minicolumn activities and Hebbian type synaptic plasticity of afferents to the minicolumns. If input in the form of activity patterns is presented, self-organization of receptive fields (RFs) of the minicolumns is induced. Self-organization is shown to appropriately classify input patterns or to extract basic constituents form input patterns consisting of superpositions of subpatterns. The latter is demonstrated using the bars benchmark test. The dynamics was motivated by the more explicit model suggested in [1] but represents a much compacter, continuous, and easier to analyze dynamic description.

Keywords

cerebral cortex cortical columns non-linear dynamics self-organization receptive fields 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Lücke, J., von der Malsburg, C.: Rapid processing and unsupervised learning in a model of the cortical macrocolumn. Neural Computation 16, 501–533 (2004)zbMATHCrossRefGoogle Scholar
  2. 2.
    Mountcastle, V.B.: The columnar organization of the neocortex. Brain 120, 701–722 (1997)CrossRefGoogle Scholar
  3. 3.
    Buxhoeveden, D.P., Casanova, M.F.: The minicolumn and evolution of the brain. Brain, Behavior and Evolution 60, 125–151 (2002)CrossRefGoogle Scholar
  4. 4.
    Favorov, O.V., Diamond, M.: Demonstration of discrete place-defined columns, segregates, in cat SI. Journal of Comparative Neurology 298, 97–112 (1990)CrossRefGoogle Scholar
  5. 5.
    Schmidt, K.E., Kim, D.S., Singer, W., Bonhoeffer, T., Löwel, S.: Functional specificity of long-range intrinsic and interhemispheric connections in the visual cortex of strabismic cats. Journal of Neuroscience 17, 5480–5492 (1997)Google Scholar
  6. 6.
    Lücke, J.: Dynamics of cortical columns – sensitive decision making. In: Duch, W., Kacprzyk, J., Oja, E., Zadrożny, S. (eds.) ICANN 2005. LNCS, vol. 3696, pp. 25–30. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  7. 7.
    Földiák, P.: Forming sparse representations by local anti-Hebbian learning. Biological Cybernetics 64, 165–170 (1990)CrossRefGoogle Scholar
  8. 8.
    Lücke, J.: Hierarchical self-organization of minicolumnar receptive fields. Neural Networks, Special Issue ‘New Developments in Self-Organizing Systems’ 17/8–9, 1377–1389 (2004)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Jörg Lücke
    • 1
    • 2
  • Jan D. Bouecke
    • 1
  1. 1.Institut für NeuroinformatikRuhr-UniversitätBochumGermany
  2. 2.Gatsby Computational Neuroscience UnitUCLLondonUK

Personalised recommendations