Study of Nitric Oxide Effect in the Hebbian Learning: Towards a Diffusive Hebb’s Law

  • C. P. Suárez Araujo
  • P. Fernández López
  • P. García Báez
  • J. Regidor García
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3696)


The Computational Neuroscience has as main goal the understanding of the computational style of the brain and developing artificial systems with brain capabilities. Our paper belongs to this field. We will use an Hebbian neural ensemble which follow a non-linear differential equation system namely Hebbian System (HS), which represent the neurodynamics and the adaptation in accordance with the Hebb’s postulate, to study the influence of the NO diffusion in the Hebbian learning. Considering that the postsynaptic neurons provide retrograde signals to the presynaptic neurons [1] we suggest the NO as a probable biological support to the Hebb’s law propounding a new mathematical formulation of that learning law, the diffusive Hebb’s law. We will present a study of the behavior of the diffusive Hebb’s law using a Diffusive Hebbian System (DHS).


Nitric Oxide Postsynaptic Neuron Hebbian Learning Computational Neuroscience Weight Dynamic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Tao, H.W., Poo, M.-m.: Retrograde signaling at central synapses. PNAS 98(20), 11009–11015 (2001)CrossRefGoogle Scholar
  2. 2.
    Brown, T.H., Kairiss, E.W., Keenan, C.L.: Hebbian Synapses: Biophysical Mechanisms and Algorithms. Annu. Rev. Neurosci. 13, 475–511 (1990)CrossRefGoogle Scholar
  3. 3.
    Tanzi, E.: I fatti e la induzioni nell ’odierna istologia del sistema nervioso. Riv. Sper. Freniatr. Med. Leg. Alienazioni Ment. Soc.Ital. Psichiatria 19, 419–472 (1893)Google Scholar
  4. 4.
    Gluck, M.A., Granger, R.: Annu. Rev. Neurosci. 16, 667–706 (1993)Google Scholar
  5. 5.
    Hebb, D.O.: The organization of behaviour. Wiley and Sons, New York (1949)Google Scholar
  6. 6.
    Suárez Araujo, C.P.: Study and Reflections on the Functional and Organisational Role of Neuromessenger Nitric Oxide in Learning: An Artificial and Biological Approach. Computer Anticipatory Systems AIP 517, 296–307 (2000)Google Scholar
  7. 7.
    Fernández López, P., Suárez Araujo, C.P., García Báez, P., Sánchez Martín, G.: Diffusion Associative Network: Diffusive Hybrid Neuromodulation and Volume Learning. In: Mira, J., Álvarez, J.R. (eds.) IWANN 2003. LNCS, vol. 2686, pp. 54–61. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  8. 8.
    Korneev, S.A., Straub, V., Kemenes, I., Korneeva, E.I., Ott, S.R., Benjamin, P.R., OShea, M.: Timed and Targeted Differential Regulation of Nitric Oxide Synthase (NOS) and Anti-NOS Genes by Reward Conditioning Leading to Long-Term Memory Formatio. J. Neurosci. 25(5), 1188–1192 (2005)CrossRefGoogle Scholar
  9. 9.
    Suárez Araujo, C.P., Fernández López, P., García Báez, P.: Towards a Model of Volume Transmission in Biological and Artificial Neural Networks: A CAST Approach. In: Moreno-Díaz Jr., R., Buchberger, B., Freire, J.-L. (eds.) EUROCAST 2001. LNCS, vol. 2178, pp. 328–342. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  10. 10.
    Fernández López, P., Suárez Araujo, C.P., García Báez, P., Regidor García, J.: A Model of Nitric Oxide Diffusion based in Compartmental Systems (in press)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • C. P. Suárez Araujo
    • 1
  • P. Fernández López
    • 1
  • P. García Báez
    • 2
  • J. Regidor García
    • 1
  1. 1.Institute for CyberneticsUniversity of Las Palmas de Gran CanariaSpain
  2. 2.Dept. of Statistics, Operations Research and ComputationUniversity of la LagunaSpain

Personalised recommendations