Neuronal Coding Strategies for Two-Alternative Forced Choice Tasks

  • Erich L. Schulzke
  • Christian W. Eurich
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3696)


We investigated the connection between electrophysiological properties of neural populations and their ability to discriminate between the presence of one and two stimuli in a two-alternative forced choice task. The model is based on maximum likelihood estimation in a stimulus space that allows for the presence of multiple stimuli. Repetitive presentation of virtual stimuli yields receiver–operator–characteristics (ROC) curves and psychometric functions from noisy neural responses. For the case of one-dimensional stimuli like the movement direction of a random dot cloud we tested two coding strategies for discriminative ability. It turns out that narrow tuning curves and a variability of tuning widths within the neural population yields a high percentage of correct responses in the simulated psychophysical discrimination task. These results are similar to findings about the localization of single stimuli by neural populations: The examined encoding strategies lead to both an improvement of single stimulus estimation and discrimination between one and two stimuli.


Psychometric Function Tuning Curve Single Stimulus Neural Population Tuning Width 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abbott, L.F., Dayan, P.: The effect of correlated variability on the accuracy of a population code. Neural Comp. 11, 91–101 (1999)CrossRefGoogle Scholar
  2. 2.
    Britten, K.H., Shadlen, M., Newsome, W.T., Movshon, J.A.: The analysis of visual motion: A comparison of neuronal and psychophysical performance. J. Neurosci. 12, 4745–4765 (1992)Google Scholar
  3. 3.
    Dayan, P., Abbott, L.F.: Theoretical neuroscience: Computational and mathematical modeling of neural systems. MIT Press, Cambridge (2001)zbMATHGoogle Scholar
  4. 4.
    Dinse, H.R., Kreikemeier, K., van der Berg, I., Böhmer, G., Wiemer, J.: Manipulating input correlations: complementary forms of cortical map reorganization and perceptual learning. Soc. Neurosci. Abstr. 28, 840–843 (2002)Google Scholar
  5. 5.
    Eurich, C.W.: An estimation-theoretic framework for the presentation of multiple stimuli. In: Becker, S., Thrun, S., Obermayer, K. (eds.) Adv. Neur. Inform. Process, vol. 15, pp. 293–300. MIT Press, MA (2003)Google Scholar
  6. 6.
    Recanzone, G.H., Wurtz, R.H., Schwarz, U.: Responses of MT and MST neurons to one and two moving objects in the receptive field. J. Neurophysiol. 78, 2904–2915 (1997)Google Scholar
  7. 7.
    Seung, H.S., Sompolinsky, H.: Simple models for reading neuronal population codes. PNAS 90, 10749–10753 (1993)CrossRefGoogle Scholar
  8. 8.
    Snippe, H.P., Koenderink, J.J.: Discrimination thresholds for channel-coded systems. Biol. Cybern. 66, 543–551 (1992)zbMATHCrossRefGoogle Scholar
  9. 9.
    Treue, S., Hol, K., Rauber, H.J.: Seeing multiple directions of motion–physiology and psychophysics. Nat. Neurosci. 3, 270–276 (2000)CrossRefGoogle Scholar
  10. 10.
    van Wezel, R.J.A., Lankheet, M.J.M., Verstraten, F.A.J., Maree, A.F.M., van de Grind, W.A.: Responses of complex cells in area 17 of the cat to bi-vectorial transparent motion. Vis. Res. 36, 2805–2813 (1996)Google Scholar
  11. 11.
    Wilke, S., Eurich, C.W.: Representational accuracy of stochastic neural populations. Neural Comp. 14, 155–189 (2001)CrossRefGoogle Scholar
  12. 12.
    Zemel, R.S., Dayan, P., Pouget, A.: Probabilistic interpretation of population codes. Neural Comp. 10, 403–430 (1998)CrossRefGoogle Scholar
  13. 13.
    Zhang, K., Sejnowski, T.J.: Neural tuning: To sharpen or broaden? Neural Comp. 11, 75–84 (1999)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Erich L. Schulzke
    • 1
  • Christian W. Eurich
    • 1
  1. 1.Institut für Theoretische PhysikUniversität BremenBremenGermany

Personalised recommendations