Parity games and their subclasses and variants pop up in various contexts: μ-calculus, tree automata, program verification [3,1,8]. Such games provide only binary information indicating the winning player. However, in classical games theory [12] the emphasis is rather on how much we win or lose. Can we incorporate the information about the profits and losses into parity games?


Nash Equilibrium Markov Decision Process Stochastic Game Tree Automaton Positional Strategy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Arnold, A., Niwiński, D.: Rudiments of μ-calculus. In: Studies in Logic and the Foundations of Mathematics, vol. 146, Elsevier, Amsterdam (2001)Google Scholar
  2. 2.
    Dubins, L.E., Savage, L.J.: Inequalities for Stochastic Processes (How to gamble if you must), 2nd edn. Dover Publications, Mineola (1976)zbMATHGoogle Scholar
  3. 3.
    Emerson, E.A., Jutla, C.: Tree automata, μ-calculus and determinacy. In: FOCS 1991, pp. 368–377. IEEE Computer Society Press, Los Alamitos (1991)Google Scholar
  4. 4.
    Filar, J., Vrieze, K.: Competitive Markov Decision Processes. Springer, Heidelberg (1997)zbMATHGoogle Scholar
  5. 5.
    Gimbert, H., Zielonka, W.: From Markov decision processes to perfect information stochastic games (in preparation)Google Scholar
  6. 6.
    Gimbert, H., Zielonka, W.: When can you play positionally? In: MFCS 2004. LNCS, vol. 3153, pp. 686–697. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  7. 7.
    Gimbert, H., Zielonka, W.: Games where you can play optimally without any memory. In: CONCUR 2005. LNCS, Springer, Heidelberg (2005) (to appear)Google Scholar
  8. 8.
    Grädel, E., Thomas, W., Wilke, T. (eds.): Automata, Logics, and Infinite Games. LNCS, vol. 2500. Springer, Heidelberg (2002)zbMATHGoogle Scholar
  9. 9.
    Maitra, A.P., Sudderth, W.D.: Discrete Gambling and Stochastic Games. Springer, Heidelberg (1996)zbMATHGoogle Scholar
  10. 10.
    Mostowski, A.W.: Games with forbidden positions. Technical Report 78, Uniwersytet Gdański, Instytut Matematyki (1991)Google Scholar
  11. 11.
    Neyman, A., Sorin, S. (eds.): Stochastic Games and Applications. NATO Science Series C, Mathematical and Physical Sciences, vol. 570. Kluwer Academic Publishers, Dordrecht (2004)Google Scholar
  12. 12.
    Osborne, M.J., Rubinstein, A.: A Course in Game Theory. The MIT Press, Cambridge (2002)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Wiesław Zielonka
    • 1
  1. 1.LIAFA, case 7014Université Paris 7 and CNRSParis Cedex 05France

Personalised recommendations