Advertisement

The Generalization of Dirac’s Theorem for Hypergraphs

  • Endre Szemerédi
  • Andrzej Ruciński
  • Vojtěch Rödl
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3618)

Abstract

A substantial amount of research in graph theory continues to concentrate on the existence of hamiltonian cycles and perfect matchings. A classic theorem of Dirac states that a sufficient condition for an n-vertex graph to be hamiltonian, and thus, for n even, to have a perfect matching, is that the minimum degree is at least n/2. Moreover, there are obvious counterexamples showing that this is best possible.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bermond, J.C., et al.: Hypergraphes hamiltoniens. Prob. Comb. Theorie Graph Orsay 260, 39–43 (1976)MathSciNetGoogle Scholar
  2. 2.
    Demetrovics, J., Katona, G.O.H., Sali, A.: Design type problems motivated by database theory. Journal of Statistical Planning and Inference 72, 149–164 (1998)zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Dirac, G.A.: Some theorems for abstract graphs. Proc. London Math. Soc. 2(3), 69–81 (1952)CrossRefMathSciNetGoogle Scholar
  4. 4.
    Frankl, P., Rödl, V.: Extremal problems on set systems. Random Struct. Algorithms 20(2), 131–164 (2002)zbMATHCrossRefGoogle Scholar
  5. 5.
    Katona, G.Y., Kierstead, H.A.: Hamiltonian chains in hypergraphs. J. Graph Theory 30, 205–212 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Komlós, J., Sárközy, G.N., Szemerédi, E.: On the Pósa-Seymour conjecture. J. Graph Theory 29, 167–176 (1998)zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Kuhn, D., Osthus, D.: Matchings in hypergraphs of large minimum degree (submited)Google Scholar
  8. 8.
    Lovász, L., Plummer, M.D.: Matching theory. North-Holland Mathematics Studies 121, Annals of Discrete Mathematics 29, North-Holland Publishing Co., Amsterdam; Akadémiai Kiadó, Budapest (1986)Google Scholar
  9. 9.
    Rödl, V., Ruciński, A., Szemerédi, E.: A Dirac-type theorem for 3-uniform hypergraphs, Combinatorics, Probability and Computing (to appear)Google Scholar
  10. 10.
    Rödl, V., Ruciński, A., Szemerédi, E.: Perfect matchings in uniform hypergraphs with large minimum degree (submitted)Google Scholar
  11. 11.
    Rödl, V., Ruciński, A., Szemerédi, E.: An approximative Dirac-type theorem for k-uniform hypergraphs (submitted)Google Scholar
  12. 12.
    Szemerédi, E.: Regular partitions of graphs. Problemes combinatoires et theorie des graphes (Colloq. Internat. CNRS, Univ. Orsay, Orsay, 1976), pp. 399–401, Colloq. Internat. CNRS, 260, CNRS, Paris (1978)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Endre Szemerédi
    • 1
  • Andrzej Ruciński
    • 2
  • Vojtěch Rödl
    • 3
  1. 1.Rutgers UniversityNew Brunswick
  2. 2.A. Mickiewicz UniversityPoznańPoland
  3. 3.Emory UniversityAtlanta

Personalised recommendations