Shrinking Restarting Automata

  • Tomasz Jurdziński
  • Friedrich Otto
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3618)


Restarting automata are a restricted model of computation that is motivated by the so-called analysis by reduction. A computation of a restarting automaton consists of a sequence of cycles such that in each cycle the automaton performs exactly one rewrite step, which replaces a small part of the tape content by another, even shorter word. Here we consider a natural generalization of this model, called shrinking restarting automaton, where we require that there exists a weight function such that each rewrite step decreases the weight of the tape content with respect to that function. While it is still unknown whether the two most general types of restarting automata, the RWW-automaton and the RRWW-automaton, differ in their expressive power, we will see that the classes of languages accepted by the shrinking RWW-automaton and the shrinking RRWW-automaton coincide. Further, we will relate shrinking RRWW-automata to finite-change automata, which leads to new insights into the relationships between the classes of languages characterized by (shrinking) restarting automata and some well-known time and space complexity classes.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Book, R.V., Greibach, S.: Quasi-realtime languages. Mathematical Systems Theory 4, 97–111 (1970)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Book, R.V., Otto, F.: String-Rewriting Systems. Springer, New York (1993)zbMATHGoogle Scholar
  3. 3.
    von Braunmühl, B., Verbeek, R.: Finite-change automata. In: Weihrauch, K. (ed.) GI-TCS 1979. LNCS, vol. 67, pp. 91–100. Springer, Heidelberg (1979)Google Scholar
  4. 4.
    Buntrock, G.: Wachsende kontext-sensitive Sprachen. Habilitationsschrift, Fakultät für Mathematik und Informatik, Universität Würzburg (1996)Google Scholar
  5. 5.
    Buntrock, G., Loryś, K.: On growing context-sensitive languages. In: Kuich, W. (ed.) ICALP 1992. LNCS, vol. 623, pp. 77–88. Springer, Heidelberg (1992)Google Scholar
  6. 6.
    Buntrock, G., Otto, F.: Growing context-sensitive languages and Church-Rosser languages. In: ICOM, vol. 141, pp. 1–36 (1998)Google Scholar
  7. 7.
    Dahlhaus, E., Warmuth, M.: Membership for growing context-sensitive grammars is polynomial. JCSS 33, 456–472 (1986)zbMATHMathSciNetGoogle Scholar
  8. 8.
    Jančar, P., Mráz, F., Plátek, M., Vogel, J.: Restarting automata. In: Reichel, H. (ed.) FCT 1995. LNCS, vol. 965, pp. 283–292. Springer, Heidelberg (1995)Google Scholar
  9. 9.
    Jančar, P., Mráz, F., Plátek, M., Vogel, J.: On monotonic automata with a restart operation. JALC 4, 287–311 (1999)zbMATHGoogle Scholar
  10. 10.
    Jurdziński, T., Loryś, K., Niemann, G., Otto, F.: Some results on RWW- and RRWW-automata and their relationship to the class of growing context-sensitive languages. Mathematische Schriften Kassel 14/01, Universität Kassel, Also: JALC (2001) (to appear)Google Scholar
  11. 11.
    Jurdziński, T., Otto, F.: On left-monotone restarting automata. Mathematische Schriften Kassel 17/03, Universität Kassel (2003)Google Scholar
  12. 12.
    Jurdziński, T., Otto, F.: Shrinking restarting automata. Mathematische Schriften Kassel 1/05, Universität Kassel (2005)Google Scholar
  13. 13.
    Jurdziński, T., Otto, F., Mráz, F., Plátek, M.: On the complexity of 2-monotone restarting automata. In: Calude, C.S., Calude, E., Dinneen, M.J. (eds.) DLT 2004. LNCS, vol. 3340, pp. 237–248. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  14. 14.
    McNaughton, R., Narendran, P., Otto, F.: Church-Rosser Thue systems and formal languages. JACM 35, 324–344 (1988)zbMATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Niemann, G., Otto, F.: Restarting automata, Church-Rosser languages, and representations of r.e. languages. In: Rozenberg, G., Thomas, W. (eds.) Proc. Developments in Language Theory - Foundations, Applications, and Perspectives, DLT 1999, pp. 103–114. World Scientific, Singapore (2000)CrossRefGoogle Scholar
  16. 16.
    Niemann, G., Otto, F.: Further results on restarting automata. In: Ito, M., Imaoka, T. (eds.) Proc. Words, Languages and Combinatorics III, pp. 352–369. World Scientific, Singapore (2003)CrossRefGoogle Scholar
  17. 17.
    Oliva, K., Kvĕtoň, K., Ondruška, R.: The computational complexity of rule-based part-of-speech tagging. In: Matoušek, V., Mautner, P. (eds.) TSD 2003. LNCS (LNAI), vol. 2807, pp. 82–89. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  18. 18.
    Otto, F.: Restarting automata and their relations to the Chomsky hierarchy. In: Ésik, Z., Fülöp, Z. (eds.) DLT 2003. LNCS, vol. 2710, pp. 55–74. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  19. 19.
    Plátek, M., Lopatková, M., Oliva, K.: Restarting automata: Motivations and applications. In: Holzer, M. (ed.) Workshop “Petrinets” und 13. Theorietag “Automaten und Formale Sprachen”, Institut für Informatik, Technische Universität München, Garching, pp. 90–96 (2003)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Tomasz Jurdziński
    • 1
  • Friedrich Otto
    • 2
  1. 1.Institute of Computer ScienceUniversity of WrocławWrocławPoland
  2. 2.Fachbereich Mathematik/InformatikUniversität KasselKasselGermany

Personalised recommendations