Advertisement

Two Logical Hierarchies of Optimization Problems over the Real Numbers

  • Uffe Flarup Hansen
  • Klaus Meer
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3618)

Abstract

We introduce and study certain classes of optimization problems over the real numbers. The classes are defined by logical means, relying on metafinite model theory for so called ℝ-structures (see [9],[8]). More precisely, based on a real analogue of Fagin’s theorem [9] we deal with two classes MAX-NP and MIN-NP of maximization and minimization problems, respectively, and figure out their intrinsic logical structure. It is proven that MAX-NP decomposes into four natural subclasses, whereas MIN-NP decomposes into two. This gives a real number analogue of a result by Kolaitis and Thakur [10] in the Turing model. Our proofs mainly use techniques from [13]. Finally, approximation issues are briefly discussed.

Keywords

Feasible Solution Polynomial System Real Zero Logical Framework Satisfying Assignment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ausiello, G., Crescenzi, P., Gambosi, G., Kann, V., Marchetti-Spaccamela, A., Protasi, M.: Complexity and Approximation: Combinatorial Optimization Problems and Their Approximability Properties. Springer, Heidelberg (1999)zbMATHGoogle Scholar
  2. 2.
    Basu, S., Pollack, R., Roy, M.-F.: Algorithms in Real Algebraic Geometry. Springer, Heidelberg (2003)zbMATHGoogle Scholar
  3. 3.
    Blum, L., Cucker, F., Shub, M., Smale, S.: Complexity and Real Computation. Springer, Heidelberg (1998)Google Scholar
  4. 4.
    Bürgisser, P., Cucker, F.: Counting Complexity Classes for Numeric Computations II: Algebraic and Semialgebraic Sets. In: Proc. 36th Symposium on Theory of Computing STOC, pp. 475–485 (2004)Google Scholar
  5. 5.
    Chadzelek, T., Hotz, G.: Analytic machines. Theoretical Computer Science 219, 151–167 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Cucker, F., Meer, K.: Logics which capture complexity classes over the reals. Journal of Symbolic Logic 64(1), 363–390 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Ebbinghaus, H.D., Flum, J.: Finite Model Theory. Springer, Heidelberg (1995)zbMATHGoogle Scholar
  8. 8.
    Grädel, E., Gurevich, Y.: Metafinite Model Theory. In: Leivant, D. (ed.) Logic and computational complexity, pp. 313–366. Springer, Heidelberg (1996)Google Scholar
  9. 9.
    Grädel, E., Meer, K.: Descriptive complexity theory over the real numbers. Lectures in Applied Mathematics 32, 381–403 (1996)Google Scholar
  10. 10.
    Kolaitis, P.G., Thakur, M.N.: Logical definability of NP optimization problems. Information and Computation 115(2), 321–353 (1994)zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Immerman, N.: Descriptive Complexity. Springer, Heidelberg (1999)zbMATHGoogle Scholar
  12. 12.
    Malmström, A.: Optimization problems with approximation schemes. In: van Dalen, D., Bezem, M. (eds.) CSL 1996. LNCS, vol. 1258, pp. 316–333. Springer, Heidelberg (1997)Google Scholar
  13. 13.
    Meer, K.: Counting problems over the reals. Theoretical Computer Science 242, 41–58 (2000)zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Meer, K.: On some relations between approximation problems and pCPs over the real numbers. In: Cooper, S.B., Löwe, B., Torenvliet, L. (eds.) CiE 2005. LNCS, vol. 3526, pp. 322–331. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  15. 15.
    Papadimitriou, C.H., Yannakakis, M.: Optimization, approximation and complexity classes. Journal of Computer and System Sciences 43, 425–440 (1991)zbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Renegar, J.: On the computational Complexity and Geometry of the first-order Theory of the Reals, I - III. J. of Symbolic Computation 13, 255–352 (1992)zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Uffe Flarup Hansen
    • 1
  • Klaus Meer
    • 1
  1. 1.Department of Mathematics and Computer ScienceSyddansk UniversitetOdense MDenmark

Personalised recommendations