Some Computational Issues in Membrane Computing

  • Oscar H. Ibarra
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3618)


Membrane computing is a branch of molecular computing that aims to develop models and paradigms that are biologically motivated. It identifies an unconventional computing model, namely a P system, from natural phenomena of cell evolutions and chemical reactions. Because of the nature of maximal parallelism inherent in the model, P systems have a great potential for implementing massively concurrent systems in an efficient way that would allow us to solve currently intractable problems (in much the same way as the promise of quantum and DNA computing) once future bio-technology (or silicon-technology) gives way to a practical bio-realization (or chip realization). Here we report on recent results that answer some interesting and fundamental open questions in the field. These concern computational issues such as determinism versus nondeterminism, membrane and alphabet-size hierarchies, and various notions of parallelism.


Catalytic System Input Symbol Computational Issue Reachability Problem Input Alphabet 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Calude, C.S., Paun, G.:Computing with Cells and Atoms: After Five Years (new text added to Russian edition of the book with the same title first published by Taylor and Francis Publishers, London) (2001); To be published by Pushchino Publishing House (2004)Google Scholar
  2. 2.
    Csuhaj-Varjú, E., Ibarra, O.H., Vaszil, G.: On the computational complexity of P automata. In: Ferretti, C., Mauri, G., Zandron, C. (eds.) DNA 2004. LNCS, vol. 3384, pp. 97–106. Springer, Heidelberg (2004)Google Scholar
  3. 3.
    Dang, Z., Ibarra, O.H.: On P systems operating in sequential and limited parallel modes. In: Pre-Proc. 6th Workshop on Descriptional Complexity of Formal Systems (2004)Google Scholar
  4. 4.
    Li, C., Dang, Z., Ibarra, O.H., Yen, H.-C.: Signaling P systems and verification problems. In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C., Yung, M. (eds.) ICALP 2005. LNCS, vol. 3580, pp. 1462–1473. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  5. 5.
    Dang, Z., Ibarra, O.H., Li, C., Xie, G.: On model-checking of P systems (Submitted)Google Scholar
  6. 6.
    Freund, R.: Sequential P-systems (2000), Available at
  7. 7.
    Freund, R.: Asynchronous P systems. In: Mauri, G., Paun, G., Zandron, C. (eds.) Pre-Proc. Fifth Workshop on Membrane Computing (2004)Google Scholar
  8. 8.
    Freund, R., Kari, L., Oswald, M., Sosik, P.: Computationally universal P systems without priorities: two catalysts are sufficient. Theoretical Computer Science 330(2), 251–266 (2005)zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Freund, R., Paun, A.: Membrane systems with symport/antiport rules: universality results. In: Păun, G., Rozenberg, G., Salomaa, A., Zandron, C. (eds.) WMC 2002. LNCS, vol. 2597, Springer, Heidelberg (2003)Google Scholar
  10. 10.
    Freund, R., Paun, G.: On deterministic P systems (2003), Available at
  11. 11.
    Frisco, P.: About P systems with symport/antiport. In: Second Brainstorming Week on Membrane Computing, Sevilla, Spain, February 2-7, pp. 224–236 (2004)Google Scholar
  12. 12.
    Greibach, S.: Remarks on blind and partially blind one-way multicounter machines. Theor. Comput. Sci. 7, 311–324 (1978)zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Ginsburg, S.: The Mathematical Theory of Context-Free Languages. McGraw-Hill, New York (1966)zbMATHGoogle Scholar
  14. 14.
    Hopcroft, J., Pansiot, J.J.: On the reachability problem for 5-dimensional vector addition systems. Theor. Comput. Sci. 8(2), 135–159 (1979)zbMATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Ibarra, O.H.: On Membrane hierarchy in P systems. Theoretical Computer Science 334, 115–129 (2005)zbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Ibarra, O.: On determinism versus nondeterminism in P systems. Theoretical Computer Science (to appear)Google Scholar
  17. 17.
    Ibarra, O., Yen, H., Dang, Z.: The power of maximal parallelism in P systems. In: Calude, C.S., Calude, E., Dinneen, M.J. (eds.) DLT 2004. LNCS, vol. 3340, pp. 212–224. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  18. 18.
    Ibarra, O., Wood, S.: On bounded symport/Antiport P systems. In: Carbone, A., Pierce, N.A. (eds.) DNA 2005. LNCS, vol. 3892, pp. 129–143. Springer, Heidelberg (2006) (to appear)CrossRefGoogle Scholar
  19. 19.
    Ibarra, O., Yen, H.: On deterministic catalytic systems. In: Pre-proceedings of 10th International Conference on Implementation and Application of Automata (2005) (to appear)Google Scholar
  20. 20.
    Ibarra, O., Woodworth, S., Yen, H.-C., Dang, Z.: On sequential and 1-deterministic P systems. In: Wang, L. (ed.) COCOON 2005. LNCS, vol. 3595, pp. 905–914. Springer, Heidelberg (2005) (to appear)CrossRefGoogle Scholar
  21. 21.
    Monien, B.: Two-way multihead automata over a one-letter alphabet. RAIRO Informatique theorique 14(1), 67–82 (1980)zbMATHMathSciNetGoogle Scholar
  22. 22.
    Paun, A., Paun, G.: The power of communication: P systems with symport/antiport. New Generation Computers 20(3), 295–306 (2002)zbMATHCrossRefGoogle Scholar
  23. 23.
    Paun, G.: Computing with membranes. Turku University Computer Science Research Report No. 208 (1998)Google Scholar
  24. 24.
    Paun, G.: Computing with membranes. Journal of Computer and System Sciences 61(1), 108–143 (2000)zbMATHCrossRefMathSciNetGoogle Scholar
  25. 25.
    Paun, G.: Membrane Computing: An Introduction. Springer, Heidelberg (2002)zbMATHGoogle Scholar
  26. 26.
    Paun, G.: Further twenty six open problems in membrane computing. Written for the Third Brainstorming Week on Membrane Computing, Sevilla, Spain (February 2005), Available at
  27. 27.
    Paun, G., Rozenberg, G.: A guide to membrane computing. Theoretical Computer Science 287(1), 73–100 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  28. 28.
    Paun, G., Pazos, J., Perez-Jimenez, M.J., Rodriguez-Paton, A.: Symport/antiport P systems with three objects are universal. Fundamenta Informaticae 64, 1–4 (2004)MathSciNetGoogle Scholar
  29. 29.
    Savitch, W.: Relationships between nondeterministic and deterministic tape complexities. J. Comput. Syst. Sci. 4(2), 177–192 (1970)zbMATHMathSciNetCrossRefGoogle Scholar
  30. 30.
    Savitch, W.: A note on multihead automata and context-sensitive languages. Acta Informatica 2, 249–252 (1973)zbMATHCrossRefMathSciNetGoogle Scholar
  31. 31.
    Sosik, P.: P systems versus register machines: two universality proofs. In: Păun, G., Rozenberg, G., Salomaa, A., Zandron, C. (eds.) WMC 2002. LNCS, vol. 2597, pp. 371–382. Springer, Heidelberg (2003)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Oscar H. Ibarra
    • 1
  1. 1.Department of Computer ScienceUniversity of CaliforniaSanta BarbaraUSA

Personalised recommendations