Autoreducibility, Mitoticity, and Immunity

  • Christian Glaßer
  • Mitsunori Ogihara
  • A. Pavan
  • Alan L. Selman
  • Liyu Zhang
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3618)


We show the following results regarding complete sets.
  • NP-complete sets and PSPACE-complete sets are many-one autoreducible.

  • Complete sets of any level of PH, MODPH, or the Boolean hierarchy over NP are many-one autoreducible.

  • EXP-complete sets are many-one mitotic.

  • NEXP-complete sets are weakly many-one mitotic.

  • PSPACE-complete sets are weakly Turing-mitotic.

  • If one-way permutations and quick pseudo-random generators exist, then NP-complete languages are m-mitotic.

  • If there is a tally language in NP ∩ coNP - P, then, for every ε > 0, NP-complete sets are not 2 n(1 + ε)-immune.

These results solve several of the open questions raised by Buhrman and Torenvliet in their 1994 survey paper on the structure of complete sets.


Turing Machine SIAM Journal Regular Language Boolean Hierarchy Unconditional Result 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Agrawal, M.: Pseudo-random generators and structure of complete degrees. In: 17th Annual IEEE Conference on Computational Complexity, pp. 139–145 (2002)Google Scholar
  2. 2.
    Ambos-Spies, K.: P-mitotic sets. In: Börger, E., Hasenjäger, G., Roding, D. (eds.) Logic and Machines. LNCS, vol. 177, pp. 1–23. Springer, Heidelberg (1984)Google Scholar
  3. 3.
    Ambos-Spies, K., Fleischhack, H., Huwig, H.: Diagonalizations over polynomial time computable sets. Theoretical Computer Science 51, 177–204 (1987)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Ambos-Spies, K., Neis, H., Terwijn, A.: Genericity and measure for exponential time. Theoretical Computer Science 168(1), 3–19 (1996)zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Balcazar, J., Mayordomo, E.: A note on genericty and bi-immunity. In: Proceedings of the Tenth Annual IEEE Conference on Computational Complexity, pp. 193–196 (1995)Google Scholar
  6. 6.
    Balcázar, J., Schöning, U.: Bi-immune sets for complexity classes. Mathematical Systems Theory 18(1), 1–18 (1985)zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Beigel, R., Feigenbaum, J.: On being incoherent without being very hard. Computational Complexity 2, 1–17 (1992)zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Beigel, R., Gill, J.: Counting classes: Thresholds, parity, mods, and fewness. Theoretical Computer Science 103, 3–23 (1992)zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Berman, L.: Polynomial Reducibilities and Complete Sets. PhD thesis, Cornell University, Ithaca, NY (1977)Google Scholar
  10. 10.
    Buhrman, H., Fortnow, L., van Melkebeek, D., Torenvliet, L.: Using autoreducibility to separate complexity classes. SIAM Journal on Computing 29(5), 1497–1520 (2000)zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Buhrman, H., Hoene, A., Torenvliet, L.: Splittings, robustness, and structure of complete sets. SIAM Journal on Computing 27, 637–653 (1998)zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Buhrman, H., Torenvliet, L.: On the structure of complete sets. In: Proceedings 9th Structure in Complexity Theory, pp. 118–133 (1994)Google Scholar
  13. 13.
    Buhrman, H., Torenvliet, L.: Complete sets and structure in subrecursive classes. In: Proceedings of Logic Colloquium 1996, pp. 45–78. Springer, Heidelberg (1998)Google Scholar
  14. 14.
    Buhrman, H., Torenvliet, L.: Separating complexity classes using structural properties. In: Proceedings of the 19th IEEE Conference on Computational Complexity, pp. 130–138 (2004)Google Scholar
  15. 15.
    Buhrman, H., Torenvliet, L.: A Post’s program for complexity theory. Bulleting of the EATCS 85, 41–51 (2005)zbMATHMathSciNetGoogle Scholar
  16. 16.
    Ganesan, K., Homer, S.: Complete problems and strong polynomial reducibilities. SIAM Journal on Computing 21, 733–742 (1992)zbMATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Glaßer, C., Pavan, A., Selman, A., Sengupta, S.: Properties of NP-complete sets. In: Proceedings of the 19th Annual IEEE Conference on Computational Complexity, pp. 184–197 (2004)Google Scholar
  18. 18.
    Hertrampf, U., Lautemann, C., Schwentick, T., Vollmer, H., Wagner, K.W.: On the power of polynomial time bit-reductions. In: Proceedings 8th Structure in Complexity Theory, pp. 200–207 (1993)Google Scholar
  19. 19.
    Homer, S., Selman, A.: Computability and Complexity Theory. In: Texts in Computer Science, Springer, New York (2001)Google Scholar
  20. 20.
    Juedes, D.W., Lutz, J.H.: The complexity and distribution of hard problems. SIAM Joutnal on Computing 24, 279–295 (1995)zbMATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Ladner, R.: Mitotic recursively enumerable sets. Journal of Symbolic Logic 38(2), 199–211 (1973)zbMATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    Ogiwara, M., Watanabe, O.: On polynomial-time bounded truth-table reducibility of NP sets to sparse sets. SIAM Journal of Computing 20(3), 471–483 (1991)zbMATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    Pavan, A., Selman, A.: Separation of NP-completeness notions. SIAM Journal on Computing 31(3), 906–918 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  24. 24.
    Schöning, U.: Probabilistic complexity classes and lowness. Journal of Computer and System Sciences 39, 84–100 (1989)zbMATHCrossRefMathSciNetGoogle Scholar
  25. 25.
    Stockmeyer, L.: The polynomial-time hierarchy. Theoretical Computer Science 3, 1–22 (1977)zbMATHCrossRefMathSciNetGoogle Scholar
  26. 26.
    Trahtenbrot, B.: On autoreducibility. Dokl. Akad. Nauk SSSR, 192 (1970); Translation in Soviet Math. Dokl.  11, 814–817 (1970)Google Scholar
  27. 27.
    Tran, N.: On P-immunity of nondeterministic complete sets. In: Proceedings of the 10th Annual Conference on Structure in Complexity Theory, pp. 262–263. IEEE Computer Society Press, Los Alamitos (1995)CrossRefGoogle Scholar
  28. 28.
    Wagner, K.W.: Leaf language classes. In: Margenstern, M. (ed.) MCU 2004. LNCS, vol. 3354, pp. 60–81. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  29. 29.
    Wrathall, C.: Complete sets and the polynomial-time hierarchy. Theoretical Computer Science 3, 23–33 (1977)zbMATHCrossRefMathSciNetGoogle Scholar
  30. 30.
    Yao, A.: Coherent functions and program checkers. In: Proceedings of the 22nd Annual Symposium on Theory of Computing, pp. 89–94 (1990)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Christian Glaßer
    • 1
  • Mitsunori Ogihara
    • 2
  • A. Pavan
    • 3
  • Alan L. Selman
    • 4
  • Liyu Zhang
    • 4
  1. 1.Universität Würzburg 
  2. 2.University of Rochester 
  3. 3.Iowa State University 
  4. 4.University at Buffalo 

Personalised recommendations