Goals in the Propositional Horn ⊃  Language Are Monotone Boolean Circuits

  • J. Gaintzarain
  • M. Hermo
  • M. Navarro
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3618)


Horn  ⊃  is a logic programming language which extends usual Horn clauses by adding intuitionistic implication in goals and clause bodies. This extension can be seen as a form of structuring programs in logic programming. Restricted to the propositional setting of this language, we prove that any goal in Horn  ⊃  can be translated into a monotone Boolean circuit which is linear in the size of the goal.


Logic Program Logic Programming Model Semantic Horn Clause Boolean Formula 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Angluin, D., Kharitonov, M.: When won’t Membership Queries Help? Journal of Computer and System Sciences 50(2), 336–355 (1995)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Arruabarrena, R., Lucio, P., Navarro, M.: A strong logic programming view for static embedded implications. In: Thomas, W. (ed.) FOSSACS 1999. LNCS, vol. 1578, pp. 56–72. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  3. 3.
    Baldoni, M., Giordano, L., Martelli, A.: Translating a Modal Language with Embedded Implication into Horn Clause Logic. In: Proc. of \(5\check{z}\) Int. Workshop of Extensions of Logic Programming, ELP 1996. Lect. Notes in Comput.Sciences, vol. 1050, Springer, Heidelberg (1996)Google Scholar
  4. 4.
    Bugliesi, M., Lamma, E., Mello, P.: Modularity in Logic Programming. Journal of Logic Programming (19-20), 443–502 (1994)Google Scholar
  5. 5.
    Gabbay, D.M.: N-Prolog: An Extension of Prolog with Hypothetical Implications. II. Logical Foundations and Negation as Failure. Journal of Logic Programming 2(4), 251–283 (1985)zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Gaintzarain, J., Hermo, M., Navarro, M.: On Learning Conjunctions of Horn  ⊃  Clauses. In: CiE 2005, New Computational Paradigms, Amsterdam, June 8-12 (2005)Google Scholar
  7. 7.
    Giordano, L., Martelli, A.: Structuring Logic Programs: A Modal Approach. Journal of Logic Programming 21, 59–94 (1994)zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Giordano, L., Martelli, A., Rossi, G.: Extending Horn Clause Logic with Implication Goals. Theoretical Computer Science 95, 43–74 (1992)zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Kearns, M., Valiant, L.: Criptographic Limitations on Learning Boolean Formulae and Finite Automata. Journal of the ACM 41(1), 67–95 (1994)zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Lucio, P.: Structured Sequent Calculi for Combining Intuitionistic and Classical First-Order Logic. In: Kirchner, H. (ed.) FroCos 2000. LNCS, vol. 1794, pp. 88–104. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  11. 11.
    Meseguer, J.: Multiparadigm Logic Programming. In: Kirchner, H., Levi, G. (eds.) ALP 1992. LNCS, vol. 632, pp. 158–200. Springer, Heidelberg (1992)CrossRefGoogle Scholar
  12. 12.
    Miller, D.: A Logical Analysis of Modules in Logic Programming. Journal of Logic Programming 6, 79–108 (1989)zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Miller, D., Nadathur, G., Pfenning, F., Scedrov, A.: Uniform Proofs as a Foundation for Logic Programming. Annals of Pure and App. Logic 51, 125–157 (1991)zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Monteiro, L., Porto, A.: Contextual Logic Programming. In: Proc. 6th International Conf. on Logic Programming, pp. 284–299 (1989)Google Scholar
  15. 15.
    Moscowitz, Y., Shapiro, E.: Lexical Logic Programs. In: Proc. 8th International Conf. on Logic Programming, pp. 349–363 (1991)Google Scholar
  16. 16.
    Navarro, M.: From Modular Horn Programs to Flat Ones: a Formal Proof for the Propositional Case. In: Proc. of ISIICT 2004 (Int. Symp. on Innovation in Information and Communication Technology), Amman, Jordan, Technical Report UPV-EHU/ LSI/ TR 01- (April 2004)Google Scholar
  17. 17.
    Papadimitriou, C.H.: Computational Complexity. Addison-Wesley Publishing Company, Inc, Reading (1995)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • J. Gaintzarain
    • 1
  • M. Hermo
    • 1
  • M. Navarro
    • 1
  1. 1.Dpto de L.S.I.Facultad de InformáticaSan SebastiánSpain

Personalised recommendations