Advertisement

Packing Weighted Rectangles into a Square

  • Aleksei V. Fishkin
  • Olga Gerber
  • Klaus Jansen
  • Roberto Solis-Oba
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3618)

Abstract

We consider the problem of packing a set of weighted rectangles into a unit size square frame [0,1] × [0,1] so as to maximize the total weight of the packed rectangles. We present polynomial time approximation schemes (PTASs) that, for any ε>0, find (1 - ε)-approximate solutions for two special cases of the problem. In the first case we pack a set of squares whose weights are equal to their areas. In the second case we pack a set of weighted rectangles into an augmented square frame [0,1 + 3ε] × [0,1 + 3ε].

Keywords

Side Length Knapsack Problem Packing Problem Unit Size Maximum Area 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Baker, B.S., Brown, D.J., Katseff, H.P.: A 5/4 algorithm for two dimensional packing. Journal of Algorithms 2, 348–368 (1981)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Baker, B.S., Calderbank, A.R., Coffman, E.G., Lagarias, J.C.: Approximation algorithms for maximizing the number of squares packed into a rectangle. SIAM Journal on Algebraic and Discrete Methods 4, 383–397 (1983)zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Bansal, N., Sviridenko, M.: New approximability and inapproximability results for 2-dimensional bin packing. In: 15th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 189–196 (2004)Google Scholar
  4. 4.
    Caprara, A.: Packing 2-dimensional bins in harmony. In: 43rd Annual Symposium on Foundations of Computer Science(FOCS), pp. 490–499 (2002)Google Scholar
  5. 5.
    Chung, F.R.K., Garey, M.R., Johnson, D.S.: On packing two-dimentional bins. SIAM Journal on Algebraic and Discrete Methods 3, 66–76 (1982)zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Correa, J.R., Kenyon, C.: Approximation schemes for multidimensional packing. In: Proceedings 15th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 179–188 (2004)Google Scholar
  7. 7.
    Fishkin, A.V., Gerber, O., Jansen, K., Solis-Oba, R.: On packing squares with resource augmentation: maximizing the profit. In: Computing: The Australasian Theory Symposium, CATS (2005)Google Scholar
  8. 8.
    Fishkin, A.V., Gerber, O., Jansen, K.: On weighted rectangle packing with large resources. In: 3rd IFIP International Conference on Theoretical Computer Science, pp. 237–250 (2004)Google Scholar
  9. 9.
    Jansen, K., Zhang, G.: On rectangle packing: maximizing benefits. In: 15th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 197–206 (2004)Google Scholar
  10. 10.
    Kenyon, C., Rémila, E.: Approximate strip-packing. In: 37th Annual Symposium on Foundations of Computer Science (FOCS), pp. 31–36 (1996)Google Scholar
  11. 11.
    Schiermeyer, I.: Reverse fit: a 2-optimal algorithm for packing rectangles. In: 2nd European Symposium on Algorithms (ESA), pp. 290–299 (1994)Google Scholar
  12. 12.
    Seiden, S., van Stee, R.: New bounds for multi-dimentional packing. Algorithmica 36(3), 261–293 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Steinberg, A.: A strip-packing algorithm with absolute performance bound 2. SIAM Journal on Computing 26(2), 401–409 (1997)zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Aleksei V. Fishkin
    • 1
  • Olga Gerber
    • 2
  • Klaus Jansen
    • 2
  • Roberto Solis-Oba
    • 3
  1. 1.Max-Planck-Institut für InformatikSaarbrückenGermany
  2. 2.University of KielKielGermany
  3. 3.Department of Computer ScienceThe University of Western OntarioLondonCanada

Personalised recommendations