Skip to main content

Zeta-Dimension

(Preliminary Version)

  • Conference paper
Mathematical Foundations of Computer Science 2005 (MFCS 2005)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3618))

Abstract

The zeta-dimension of a set A of positive integers is

Dim ζ (A) = inf{s | ζ A (s) < ∞ },

where

\(\zeta_A(s)=\sum_{n\in A}n^{-s}.\)

Zeta-dimension serves as a fractal dimension on ℤ +  that extends naturally and usefully to discrete lattices such as ℤd, where d is a positive integer.

This paper reviews the origins of zeta-dimension (which date to the eighteenth and nineteenth centuries) and develops its basic theory, with particular attention to its relationship with algorithmic information theory. New results presented include a gale characterization of zeta-dimension and a theorem on the zeta-dimensions of pointwise sums and products of sets of positive integers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adleman, L.: Toward a mathematical theory of self-assembly. Technical report, USC (January 2000)

    Google Scholar 

  2. Apostol, T.M.: Introduction to Analytic Number Theory. In: Undergraduate Texts in Mathematics, Springer, Heidelberg (1976)

    Google Scholar 

  3. Apostol, T.M.: Modular Functions and Dirichlet Series in Number Theory. Graduate Texts in Mathematics 41 (1976)

    Google Scholar 

  4. Athreya, K.B., Hitchcock, J.M., Lutz, J.H., Mayordomo, E.: Effective strong dimension, algorithmic information, and computational complexity. SIAM Journal on Computing (to appear); Preliminary version appeared. In: Proceedings of the 21st International Symposium on Theoretical Aspects of Computer Science, pp. 632–643 (2004)

    Google Scholar 

  5. Barlow, M.T., Taylor, S.J.: Fractional dimension of sets in discrete spaces. Journal of Physics A 22, 2621–2626 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  6. Barlow, M.T., Taylor, S.J.: Defining fractal subsets of ℤd. Proc. London Math. Soc. 64, 125–152 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  7. Bedford, T., Fisher, A.: Analogues of the lebesgue density theorem for fractal sets of reals and integers. Proc. London Math. Soc. 64, 95–124 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  8. Cahen, E.: Sur la fonction ζ(s) de Riemann et sur des fonctions analogues. Annales de l’École Normale supérieure 11(3), S. 85 (1894)

    Google Scholar 

  9. Conner, W.M.: The dimension of a formal language. Information and Control 29, 1–10 (1975)

    Article  MATH  MathSciNet  Google Scholar 

  10. Dai, J.J., Lathrop, J.I., Lutz, J.H., Mayordomo, E.: Finite-state dimension. Theoretical Computer Science 310, 1–33 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  11. deLuca, A.: On the entropy of a formal language. In: Brakhage, H. (ed.) Automata Theory and Formal Languages. Proc. 2nd GI Conference. LNCS, vol. (33), pp. 103–109. Springer, Heidelberg (1975)

    Google Scholar 

  12. Dirichlet, L.: Über den satz: das jede unbegrenzte arithmetische Progression, deren erstes Glied und Differenz keinen gemeinschaftlichen Factor sind, unendlichen viele Primzahlen enthalt. Mathematische Abhandlungen,1837. Bd. 1 313–342 (1889)

    Google Scholar 

  13. Eilenberg, S.: Automata, Languages, and Machines, vol. A. Academic Press, London (1974)

    MATH  Google Scholar 

  14. Euler, L.: Variae observationes circa series infinitas. Commentarii Academiae Scientiarum Imperialis Petropolitanae 9, 160–188 (1737)

    Google Scholar 

  15. Falconer, K.: Fractal Geometry: Mathematical Foundations and Applications, 2nd edn. Wiley, Chichester (2003)

    Book  MATH  Google Scholar 

  16. Furstenberg, H.: Intersections of Cantor sets and transversality of semigroups. In: Problems in analysis. Symposium Salomon Bochner (1969)

    Google Scholar 

  17. Hansel, G., Perrin, D., Simon, I.: Compression and entropy. In: Proceedings of the 9th Annual Symposium on Theoretical Aspects of Computer Science, pp. 515–528 (1992)

    Google Scholar 

  18. Hardy, G., Wright, E.: An Introduction to the Theory of Numbers, 5th edn. Clarendon Press, Oxford (1979)

    MATH  Google Scholar 

  19. Hausdorff, F.: Dimension und äusseres Mass. Mathematische Annalen 79, 157–179 (1919)

    Article  MathSciNet  Google Scholar 

  20. Hitchcock, J.M.: Effective fractal dimension: foundations and applications. PhD thesis, Iowa State University (2003)

    Google Scholar 

  21. Hueter, I., Peres, Y.: Self-affine carpets on the square lattice. Comb. Probab., Computing 6, 197–204 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  22. Knopp, K.: Über die Abszisse der Grenzgeraden einer Dirichletschen Reihe. Sitzungsberichte der Berliner Mathematischen Gesellschaft (1910)

    Google Scholar 

  23. Knopp, K.: Theory and Application of Infinite Series. Dover Publications, New York (1990) ( First published in German in 1921 and in English in 1928)

    Google Scholar 

  24. Kuich, W.: On the entropy of context-free languages. Information and Control 16(2), 173–200 (1970)

    Article  MATH  MathSciNet  Google Scholar 

  25. Li, M., Vitányi, P.M.B.: An Introduction to Kolmogorov Complexity and its Applications, 2nd edn. Springer, Berlin (1997)

    MATH  Google Scholar 

  26. Lutz, J.H.: Dimension in complexity classes. SIAM Journal on Computing 32, 1236–1259 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  27. Lutz, J.H.: The dimensions of individual strings and sequences. Information and Computation 187, 49–79 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  28. Lutz, J.H.: Effective fractal dimensions. Mathematical Logic Quarterly 51, 62–72 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  29. McKenzie, P., Wagner, K.: The complexity of membership problems for circuits over sets of natural numbers. In: Proceedings of the Twentieth Annual Symposium on Theoretical Aspects of Computer Science, pp. 571–582 (2003)

    Google Scholar 

  30. Olsen, L.: Distribution of digits in integers: fractal dimension and zeta functions. Acta Arith. 105(3), 253–277 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  31. Olsen, L.: Distribution of digits in integers: Besicovitch-Eggleston subsets of ℕ. Journal of London Mathematical Society 67(3), 561–579 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  32. Riemann, B.: Über die Anzahl der Primzahlen unter einer gegebener Grösse. In: Monatsber. Akad. Berlin, pp. 671–680 (1859)

    Google Scholar 

  33. Rothemund, P.W.K., Winfree, E.: The program-size complexity of self-assembled squares (extended abstract). In: STOC, pp. 459–468 (2000)

    Google Scholar 

  34. Shannon, C.E.: A mathematical theory of communication. Bell System Technical Journal 27, 379–423, 623–656 (1948)

    MATH  MathSciNet  Google Scholar 

  35. Staiger, L.: Kolmogorov complexity and Hausdorff dimension. Information and Computation 103, 159–194 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  36. Stewart, I.: Four encounters with Sierpinski’s gasket. The Mathematical Intelligencer 17(1), 52–64 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  37. Strichartz, R.S.: Fractals in the large. Canadian Journal of Mathematics 50(3), 638–657 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  38. Sullivan, D.: Entropy, Hausdorff measures old and new, and limit sets of geometrically finite Kleinian groups. Acta Mathematica 153, 259–277 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  39. Tricot, C.: Two definitions of fractional dimension. Mathematical Proceedings of the Cambridge Philosophical Society 91, 57–74 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  40. Willson, S.J.: Growth rates and fractional dimensions in cellular automata. Physica D 10, 69–74 (1984)

    Article  MathSciNet  Google Scholar 

  41. Willson, S.J.: The equality of fractional dimensions for certain cellular automata. Physica D 24, 179–189 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  42. Wirsing, E.: Bemerkung zu der arbeit über vollkommene zahlen. Mathematische Annalen 137, 316–318 (1959)

    Article  MATH  MathSciNet  Google Scholar 

  43. Zvonkin, A.K., Levin, L.A.: The complexity of finite objects and the development of the concepts of information and randomness by means of the theory of algorithms. Russian Mathematical Surveys 25, 83–124 (1970)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Doty, D., Gu, X., Lutz, J.H., Mayordomo, E., Moser, P. (2005). Zeta-Dimension. In: Jȩdrzejowicz, J., Szepietowski, A. (eds) Mathematical Foundations of Computer Science 2005. MFCS 2005. Lecture Notes in Computer Science, vol 3618. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11549345_25

Download citation

  • DOI: https://doi.org/10.1007/11549345_25

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-28702-5

  • Online ISBN: 978-3-540-31867-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics