Advertisement

Asynchronous Deterministic Rendezvous in Graphs

  • Gianluca De Marco
  • Luisa Gargano
  • Evangelos Kranakis
  • Danny Krizanc
  • Andrzej Pelc
  • Ugo Vaccaro
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3618)

Abstract

Two mobile agents (robots) having distinct labels and located in nodes of an unknown anonymous connected graph, have to meet. We consider the asynchronous version of this well-studied rendezvous problem and we seek fast deterministic algorithms for it. Since in the asynchronous setting meeting at a node, which is normally required in rendezvous, is in general impossible, we relax the demand by allowing meeting of the agents inside an edge as well. The measure of performance of a rendezvous algorithm is its cost: for a given initial location of agents in a graph, this is the number of edge traversals of both agents until rendezvous is achieved. If agents are initially situated at a distance D in an infinite line, we show a rendezvous algorithm with cost O(D|L min |2) when D is known and O((D + |L max |)3) if D is unknown, where |L min | and |L max | are the lengths of the shorter and longer label of the agents, respectively. These results still hold for the case of the ring of unknown size but then we also give an optimal algorithm of cost O(n|L min |), if the size n of the ring is known, and of cost O(n|L max |), if it is unknown. For arbitrary graphs, we show that rendezvous is feasible if an upper bound on the size of the graph is known and we give an optimal algorithm of cost O(D|L min |) if the topology of the graph and the initial positions are known to agents.

Keywords

Mobile Agent Port Number Arbitrary Graph Central Edge Unknown Size 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aleliunas, R., Karp, R.M., Lipton, R.J., Lovász, L., Rackoff, C.: Random walks, universal traversal sequences, and the complexity of maze problems. In: Proc. FOCS 1979, pp. 218–223 (1979)Google Scholar
  2. 2.
    Alpern, S.: The rendezvous search problem. SIAM J. on Control and Optimization 33, 673–683 (1995)zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Alpern, S.: Rendezvous search on labelled networks. Naval Reaserch Logistics 49, 256–274 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Alpern, S., Gal, S.: The theory of search games and rendezvous. In: Int. Series in Operations research and Management Science, Kluwer Academic Publisher, Dordrecht (2002)Google Scholar
  5. 5.
    Alpern, J., Baston, V., Essegaier, S.: Rendezvous search on a graph. Journal of Applied Probability 36, 223–231 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Alpern, S., Gal, S.: Rendezvous search on the line with distinguishable players. SIAM J. on Control and Optimization 33, 1270–1276 (1995)zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Anderson, E., Weber, R.: The rendezvous problem on discrete locations. Journal of Applied Probability 28, 839–851 (1990)CrossRefMathSciNetGoogle Scholar
  8. 8.
    Anderson, E., Essegaier, S.: Rendezvous search on the line with indistinguishable players. SIAM J. on Control and Optimization 33, 1637–1642 (1995)zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Anderson, E., Fekete, S.: Asymmetric rendezvous on the plane. In: Proc. 14th Annual ACM Symp. on Computational Geometry (1998)Google Scholar
  10. 10.
    Anderson, E., Fekete, S.: Two-dimensional rendezvous search. Operations Research 49, 107–118 (2001)zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Baston, V., Gal, S.: Rendezvous on the line when the players’ initial distance is given by an unknown probability distribution. SIAM J. on Control and Optimization 36, 1880–1889 (1998)zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Baston, V., Gal, S.: Rendezvous search when marks are left at the starting points. Naval Res. Log. 48, 722–731 (2001)zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Cook, S.A., McKenzie, P.: Problems complete for deterministic logarithmic space. Journal of Algorithms 8(5), 385–394 (1987)zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Coppersmith, D., Doyle, P., Raghavan, P., Snir, M.: Random walks on weighted graphs, and applications to on-line algorithms. In: Proc. STOC 1990, pp. 369–378.Google Scholar
  15. 15.
    Coppersmith, D., Tetali, P., Winkler, P.: Collisions among random walks on a graph. SIAM J. on Discrete Math. 6, 363–374 (1993)zbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Dessmark, A., Fraigniaud, P., Pelc, A.: Deterministic rendezvous in graphs. In: Di Battista, G., Zwick, U. (eds.) ESA 2003. LNCS, vol. 2832, pp. 184–195. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  17. 17.
    Dyer, M., Frieze, A., Kannan, R.: A random polynomial time algorithm for estimating volumes of convex bodies. In: Proc. 21st Annual ACM Symposium on Theory of Computing (STOC 1989), pp. 375–381 (1989)Google Scholar
  18. 18.
    Flocchini, P., Prencipe, G., Santoro, N., Widmayer, P.: Gathering of asynchronous oblivious robots with limited visibility. In: Ferreira, A., Reichel, H. (eds.) STACS 2001. LNCS, vol. 2010, pp. 247–258. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  19. 19.
    Gal, S.: Rendezvous search on the line. Operations Research 47, 974–976 (1999)zbMATHCrossRefGoogle Scholar
  20. 20.
    Israeli, A., Jalfon, M.: Token management schemes and random walks yield self stabilizing mutual exclusion. In: Proc. PODC 1990, pp. 119–131 (1990)Google Scholar
  21. 21.
    Kowalski, D., Pelc, A.: Polynomial deterministic rendezvous in arbitrary graphs. In: Fleischer, R., Trippen, G. (eds.) ISAAC 2004. LNCS, vol. 3341, pp. 644–656. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  22. 22.
    Kranakis, E., Krizanc, D., Santoro, N., Sawchuk, C.: Mobile agent rendezvous in a ring. In: Proc. 23rd International Conference on Distributed Computing Systems (ICDCS 2003), pp. 592–599 (2003)Google Scholar
  23. 23.
    Lim, W., Alpern, S.: Minimax rendezvous on the line. SIAM J. on Control and Optimization 34, 1650–1665 (1996)zbMATHCrossRefMathSciNetGoogle Scholar
  24. 24.
    Schelling, T.: The strategy of conflict. Oxford University Press, Oxford (1960)Google Scholar
  25. 25.
    Thomas, L.: Finding your kids when they are lost. Journal on Operational Res. Soc. 43, 637–639 (1992)zbMATHGoogle Scholar
  26. 26.
    Yu, X., Yung, M.: Agent rendezvous: a dynamic symmetry-breaking problem. In: Meyer auf der Heide, F., Monien, B. (eds.) ICALP 1996. LNCS, vol. 1099, pp. 610–621. Springer, Heidelberg (1996)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Gianluca De Marco
    • 1
  • Luisa Gargano
    • 1
  • Evangelos Kranakis
    • 2
  • Danny Krizanc
    • 3
  • Andrzej Pelc
    • 4
  • Ugo Vaccaro
    • 1
  1. 1.Dipartimento di Informatica e ApplicazioniUniversità di SalernoBaronissiItaly
  2. 2.School of Computer ScienceCarleton UniversityOttawaCanada
  3. 3.Computer Science Group, Mathematics DepartmentWesleyan UniversityMiddletownUSA
  4. 4.Département d’informatiqueUniversité du Québec en OutaouaisGatineauCanada

Personalised recommendations