Advertisement

New Resource Augmentation Analysis of the Total Stretch of SRPT and SJF in Multiprocessor Scheduling

  • Wun-Tat Chan
  • Tak-Wah Lam
  • Kin-Shing Liu
  • Prudence W. H. Wong
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3618)

Abstract

This paper studies online job scheduling on multiprocessors and, in particular, investigates the algorithms SRPT and SJF for minimizing total stretch, where the stretch of a job is its flow time (response time) divided by its processing time. SRPT is perhaps the most well-studied algorithm for minimizing total flow time or stretch. This paper gives the first resource augmentation analysis of the total stretch of SRPT, showing that it is indeed O(1)-speed 1-competitive. This paper also gives a simple lower bound result that SRPT is not s-speed 1-competitive for any s < 1.5.

This paper also makes contribution to the analysis of SJF. Extending the work of [4], we are able to show that SJF is O(1)-speed 1-competitive for minimizing total stretch. More interestingly, we find that the competitiveness of SJF can be reduced arbitrarily by increasing the processor speed (precisely, SJF is O(s)-speed (1/s)-competitive for any s ≥ 1). We conjecture that SRPT also admits a similar result.

Keywords

Processing Time Online Algorithm Single Processor Short Processing Time Online Schedule 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Avrahami, N., Azar, Y.: Minimizing total flow time and total completion time with immediate dispatching. In: SPAA, pp. 11–18 (2003)Google Scholar
  2. 2.
    Baker, K.R.: Introduction to Sequencing and Scheduling. Wiley, New York (1974)Google Scholar
  3. 3.
    Bansal, N., Pruhs, K.: Server scheduling in the Lp norm: a rising tide lifts all boat. In: STOC, pp. 242–250 (2003)Google Scholar
  4. 4.
    Becchetti, L., Leonardi, S., Marchetti-Spaccamela, A., Pruhs, K.: Online weighted flow time and deadline scheduling. In: RANDOM-APPROX, pp. 36–47 (2001)Google Scholar
  5. 5.
    Becchetti, L., Leonardi, S., Muthukrishnan, S.: Scheduling to minimize average stretch without migration. In: SODA, pp. 548–557 (2000)Google Scholar
  6. 6.
    Bender, M.A., Chakrabarti, S., Muthukrishnan, S.: Flow and stretch metrics for scheduling continuous job streams. In: SODA, pp. 270–279 (1998)Google Scholar
  7. 7.
    Bender, M.A., Muthukrishnan, S., Rajaraman, R.: Improved algorithms for stretch scheduling. In: SODA, pp. 762–771 (2002)Google Scholar
  8. 8.
    Brehob, M., Torng, E., Uthaisombut, P.: Applying extra-resource analysis to load balancing. J. Scheduling 3(5), 273–288 (2000)zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Chan, H.L., Lam, T.W., To, K.K.: Non-migratory online deadline scheduling on multiprocessors. In: SODA, pp. 970–979 (2004)Google Scholar
  10. 10.
    Chan, W.T., Lam, T.W., Ting, H.F., Wong, P.W.H.: A unified analysis of hot video schedulers. In: STOC, pp. 179–188 (2002)Google Scholar
  11. 11.
    Chekuri, C., Goel, A., Khanna, S., Kumar, A.: Multi-processor scheduling to minimize flow time with _ resource augmentation. In: STOC, pp. 363–372 (2004)Google Scholar
  12. 12.
    Chekuri, C., Khanna, S., Zhu, A.: Algorithms for minimizing weighted flow time. In: STOC, pp. 84–93 (2001)Google Scholar
  13. 13.
    Chrobak, M., Epstein, L., Noga, J., Sgall, J., van Stee, R., Tichý, T., Vakhania, N.: Preemptive scheduling in overloaded systems. In: Widmayer, P., Triguero, F., Morales, R., Hennessy, M., Eidenbenz, S., Conejo, R. (eds.) ICALP 2002. LNCS, vol. 2380, pp. 800–811. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  14. 14.
    Edmonds, J.: Scheduling in the dark. In: STOC, pp. 179–188 (1999)Google Scholar
  15. 15.
    Kalyanasundaram, B., Pruhs, K.: Maximizing job completions online. In: Bilardi, G., Pietracaprina, A., Italiano, G.F., Pucci, G. (eds.) ESA 1998. LNCS, vol. 1461, pp. 235–246. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  16. 16.
    Kalyanasundaram, B., Pruhs, K.: Speed is as powerful as clairvoyance. J. ACM 47(4), 617–643 (2000)zbMATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Leonardi, S., Raz, D.: Approximating total flow time on parallel machines. In: STOC, pp. 110–119 (1997)Google Scholar
  18. 18.
    McCullough, J., Torng, E.: SRPT optimally utilizes faster machines to minimize flow time. In: SODA, pp. 350–358 (2004)Google Scholar
  19. 19.
    Muthukrishnan, S., Rajaraman, R., Shaheen, A., Gehrke, J.: Online scheduling to minimize average stretch. In: FOCS, pp. 433–442 (1999)Google Scholar
  20. 20.
    Phillips, C.A., Stein, C., Torng, E., Wein, J.: Optimal time-critical scheduling via resource augmentation. In: STOC, pp. 140–149 (1997)Google Scholar
  21. 21.
    Pruhs, K., Sgall, J., Torng, E.: Online scheduling. In J. Leung, editor, Handbook of Scheduling: Algorithms. In: Models and Performance Analysis, p. 15–1–15–41. CRC Press, Boca Raton (2004)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Wun-Tat Chan
    • 1
  • Tak-Wah Lam
    • 1
  • Kin-Shing Liu
    • 1
  • Prudence W. H. Wong
    • 2
  1. 1.Department of Computer ScienceUniversity of Hong Kong 
  2. 2.Department of Computer ScienceUniversity of Liverpool 

Personalised recommendations