Advertisement

Basic Properties for Sand Automata

  • J. Cervelle
  • E. Formenti
  • B. Masson
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3618)

Abstract

We prove several results about the relations between injectivity and surjectivity for sand automata. Moreover, we begin the exploration of the dynamical behavior of sand automata proving that the property of ultimate periodicity is undecidable. We believe that the proof technique used for this last result might turn out to be useful for many other results in the same context.

Keywords

sand automata reversibility undecidability ultimate periodicity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bak, P.: How nature works - The science of SOC. Oxford University Press, Oxford (1997)Google Scholar
  2. 2.
    Bak, P., Tang, C.: Earthquakes as a self-organized critical phenomenon. J. Geo- phys. Res. 94, 15635–15637 (1989)CrossRefGoogle Scholar
  3. 3.
    Bak, P., Chen, K., Tang, C.: A forest-fire model and some thoughts on turbulence. Physics letters A 147, 297–300 (1990)CrossRefGoogle Scholar
  4. 4.
    Bak, P., Tang, C., Wiesenfeld, K.: Self-organized criticality. Physical Review A 38, 364–374 (1988)CrossRefMathSciNetGoogle Scholar
  5. 5.
    Subramanian, R., Scherson, I.: An analysis of diffusive load-balancing. In: ACM Symposium on Parallel Algorithms and Architecture (SPAA 1994), pp. 220–225. ACM Press, New York (1994)CrossRefGoogle Scholar
  6. 6.
    Goles, E., Kiwi, M.A.: Games on line graphs and sand piles. Theoretical Computer Science 115, 321–349 (1993)zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Goles, E., Morvan, M., Phan, H.D.: Sand piles and order structure of integer partitions. Discrete Applied Mathematics 117, 51–64 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Cervelle, J., Formenti, E.: On sand automata. In: Alt, H., Habib, M. (eds.) STACS 2003. LNCS, vol. 2607, pp. 642–653. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  9. 9.
    Hedlund, G.A.: Endomorphism and automorphism of the shift dynamical system. Mathematical System Theory 3, 320–375 (1969)zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Durand, B.: Global properties of cellular automata. In: Goles, E., Martinez, S. (eds.) Cellular Automata and Complex Systems, Kluwer, Dordrecht (1998)Google Scholar
  11. 11.
    Durand, B.: The surjectivity problem for 2d cellular automata. Journal of Com- puter and Systems Science 49, 718–725 (1994)zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Goles, E., Morvan, M., Phan, H.D.: The structure of a linear chip firing game and related models. Theoretical Computer Science 270, 827–841 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Durand, B., Formenti, E., Varouchas, G.: On undecidability of equicontinuity classification for cellular automata. In: Morvan, M., Rémila, É. (eds.) Discrete Models for Complex Systems DMCS 2003. Proceedings., Discrete Mathematics and Theoretical Computer Science, vol. AB of DMTCS, pp. 117–128 (2003)Google Scholar
  14. 14.
    Eriksson, K.: Reachability is decidable in the numbers game. Theoretical Computer Science 131, 431–439 (1994)zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • J. Cervelle
    • 1
  • E. Formenti
    • 2
  • B. Masson
    • 2
  1. 1.Institut Gaspard MongeUniversité de Marne-la-ValléeMarne-la-Vallée cedex 2France
  2. 2.Laboratoire I3S, Bât. ESSIUniversité de Nice-Sophia AntipolisSophia AntipolisFrance

Personalised recommendations