Advertisement

Linearly Bounded Infinite Graphs

  • Arnaud Carayol
  • Antoine Meyer
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3618)

Abstract

Linearly bounded Turing machines have been mainly studied as acceptors for context-sensitive languages. We define a natural family of canonical infinite automata representing their observable computational behavior, called linearly bounded graphs. These automata naturally accept the same languages as the linearly bounded machines defining them. We present some of their structural properties as well as alternative characterizations in terms of rewriting systems and context-sensitive transductions. Finally, we compare these graphs to rational graphs, which are another family of automata accepting the context-sensitive languages, and prove that in the bounded-degree case, rational graphs are a strict sub-family of linearly bounded graphs.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [Cau96]
    Caucal, D.: On infinite transition graphs having a decidable monadic theory. In: Meyer auf der Heide, F., Monien, B. (eds.) ICALP 1996. LNCS, vol. 1099, pp. 194–205. Springer, Heidelberg (1996)Google Scholar
  2. [Cau03a]
    Caucal, D.: On infinite transition graphs having a decidable monadic theory. Theor. Comput. Sci. 290, 79–115 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  3. [Cau03b]
    Caucal, D.: On the transition graphs of Turing machines. Theor. Comput. Sci. 296, 195–223 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  4. [Cho59]
    Chomsky, N.: On certain formal properties of grammars. Inf. Control 2, 137–167 (1959)zbMATHCrossRefMathSciNetGoogle Scholar
  5. [CK02]
    Caucal, D., Knapik, T.: A chomsky-like hierarchy of infinite graphs. In: Diks, K., Rytter, W. (eds.) MFCS 2002. LNCS, vol. 2420, pp. 177–187. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  6. [CM05a]
    Carayol, A., Meyer, A.: Context-sensitive languages, rational graphs and determinism. Submitted to publication, preliminary version (2005), available at http://www.irisa.fr/galion/acarayol/
  7. [CM05b]
    Carayol, A., Meyer, A.: Linearly bounded infinite graphs (extended version). Submitted to publication, preliminary version (2005), available at http://www.irisa.fr/galion/acarayol/
  8. [EM65]
    Elgot, C., Mezei, J.: On relations defined by finite automata. IBM J. Res. Develop. 9, 47–68 (1965)zbMATHCrossRefMathSciNetGoogle Scholar
  9. [Imm88]
    Immerman, N.: Nondeterministic space is closed under complementation. SIAM J. Comput. 17(5), 935–938 (1988)zbMATHCrossRefMathSciNetGoogle Scholar
  10. [KP99]
    Knapik, T., Payet, É.: Synchronized product of linear bounded machines. In: Ciobanu, G., Păun, G. (eds.) FCT 1999. LNCS, vol. 1684, pp. 362–373. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  11. [Kur64]
    Kuroda, S.: Classes of languages and linear-bounded automata. Inf. Control 7, 207–223 (1964)zbMATHCrossRefMathSciNetGoogle Scholar
  12. [LST98]
    Latteux, M., Simplot, D., Terlutte, A.: Iterated length-preserving rational transductions. In: Brim, L., Gruska, J., Zlatuška, J. (eds.) MFCS 1998. LNCS, vol. 1450, pp. 286–295. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  13. [Mor00]
    Morvan, C.: On rational graphs. In: Tiuryn, J. (ed.) FOSSACS 2000. LNCS, vol. 1784, pp. 252–266. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  14. [MS01]
    Morvan, C., Stirling, C.: Rational graphs trace context-sensitive languages. In: Sgall, J., Pultr, A., Kolman, P. (eds.) MFCS 2001. LNCS, vol. 2136, pp. 548–559. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  15. [Pay00]
    Payet, É.: Thue Specifications, Infinite Graphs and Synchronized Product. PhD thesis, Université de la Réunion (2000)Google Scholar
  16. [Sti00]
    Stirling, C.: Decidability of bisimulation equivalence for pushdown processes. Technical Report EDI-INF-RR-0005, School of Informatics, University of Edinburgh (2000)Google Scholar
  17. [Tho01]
    Thomas, W.: A short introduction to infinite automata. In: Kuich, W., Rozenberg, G., Salomaa, A. (eds.) DLT 2001. LNCS, vol. 2295, pp. 130–144. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  18. [Web96]
    Weber, A.: Decomposing a k-valued transducer into k unambiguous ones. Inf. Théor. Appl. 30(5), 379–413 (1996)zbMATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Arnaud Carayol
    • 1
  • Antoine Meyer
    • 1
    • 2
  1. 1.IrisaRennes CedexFrance
  2. 2.LiafaUniversité Denis Diderot, Case 7014Paris Cedex 05France

Personalised recommendations