It is a well-known result that the set of reachable stack contents in a pushdown automaton is a regular set of words. We consider the more general case of higher-order pushdown automata and investigate, with a particular stress on effectiveness and complexity, the natural notion of regularity for higher-order stacks: a set of level k stacks is regular if it is obtained by a regular sequence of level k operations. We prove that any regular set of level k stacks admits a normalized representation and we use it to show that the regular sets of a given level form an effective Boolean algebra. In fact, this notion of regularity coincides with the notion of monadic second order definability over the canonical structure associated to level k stacks. Finally, we consider the link between regular sets of stacks and families of infinite graphs defined by higher-order pushdown systems.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [Aho69]
    Aho, A.V.: Nested stack automata. J. ACM 16(3), 383–406 (1969)zbMATHCrossRefMathSciNetGoogle Scholar
  2. [BEM97]
    Bouajjani, A., Esparza, J., Maler, O.: Reachability analysis of pushdown automata: Application to model checking. In: Mazurkiewicz, A., Winkowski, J. (eds.) CONCUR 1997. LNCS, vol. 1243, pp. 135–150. Springer, Heidelberg (1997)Google Scholar
  3. [Blu01]
    Blumensath, A.: Prefix-recognisable graphs and monadic second-order logic. Technical Report AIB-2001-06, RWTH Aachen (2001)Google Scholar
  4. [BM04]
    Bouajjani, A., Meyer, A.: Symbolic reachability analysis of higher-order context-free processes. In: Lodaya, K., Mahajan, M. (eds.) FSTTCS 2004. LNCS, vol. 3328, pp. 135–147. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  5. [Büc64]
    Büchi, R.: Regular canonical systems. In: Archiv fur Math. Logik und Grundlagenforschung, vol. 6, pp. 91–111 (1964)Google Scholar
  6. [Car05]
    Carayol, A.: Regular sets of higher-order pushdown stacks. Extended version. A preliminary version of this article is available at the address (2005),
  7. [Cau96a]
    Caucal, D.: On infinite transition graphs having a decidable monadic theory. In: Meyer auf der Heide, F., Monien, B. (eds.) ICALP 1996. LNCS, vol. 1099, pp. 194–205. Springer, Heidelberg (1996)Google Scholar
  8. [Cau96b]
    Caucal, D.: Sur des graphes infinis réguliers. Habilitation thesis, Université de Rennes 1 (1996)Google Scholar
  9. [Cau02]
    Caucal, D.: On infinite terms having a decidable monadic theory. In: Diks, K., Rytter, W. (eds.) MFCS 2002. LNCS, vol. 2420, pp. 165–176. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  10. [Cau03]
    Caucal, D.: On infinite transition graphs having a decidable monadic theory. Theor. Comput. Sci. 290, 79–115 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  11. [CW03]
    Carayol, A., Wöhrle, S.: The caucal hierarchy of infinite graphs in terms of logic and higher-order pushdown automata. In: Pandya, P.K., Radhakrishnan, J. (eds.) FSTTCS 2003. LNCS, vol. 2914, pp. 112–123. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  12. [Dam82]
    Damm, W.: The OI- and IO-hierarchies. Theor. Comput. Sci. 20(2), 95–207 (1982)zbMATHCrossRefMathSciNetGoogle Scholar
  13. [EF95]
    Ebbinghaus, H.D., Flum, J.: Finite Model Theory. Springer, Heidelberg (1995)zbMATHGoogle Scholar
  14. [Eng83]
    Engelfriet, J.: Iterated pushdown automata and complexity classes. In: Proc. of STOC 1983, pp. 365–373. ACM Press, New York (1983)Google Scholar
  15. [Gre70]
    Greibach, S.: Full AFL’s and nested iterated substitution. Inf. Control 16(1), 7–35 (1970)zbMATHCrossRefMathSciNetGoogle Scholar
  16. [KNU02]
    Knapik, T., Niwiński, D., Urzyczyn, P.: Higher-order pushdown trees are easy. In: Nielsen, M., Engberg, U. (eds.) FOSSACS 2002. LNCS, vol. 2303, pp. 205–222. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  17. [Mas76]
    Maslov, A.N.: Multilevel stack automata. Problemy Peredachi Informatsii 12, 55–62 (1976)Google Scholar
  18. [Tho03]
    Thomas, W.: Constructing infinite graphs with a decidable MSO-theory. In: Rovan, B., Vojtáš, P. (eds.) MFCS 2003. LNCS, vol. 2747, pp. 113–124. Springer, Heidelberg (2003)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Arnaud Carayol
    • 1
  1. 1.IrisaRennes CedexFrance

Personalised recommendations