Skip to main content

Abstract Numeration Systems and Tilings

  • Conference paper
Mathematical Foundations of Computer Science 2005 (MFCS 2005)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3618))

Abstract

An abstract numeration system is a triple S = (L,Σ,<) where (Σ,<) is a totally ordered alphabet and L a regular language over Σ; the associated numeration is defined as follows: by enumerating the words of the regular language L over Σ with respect to the induced genealogical ordering, one obtains a one-to-one correspondence between ℕ and L. Furthermore, when the language L is assumed to be exponential, real numbers can also be expanded. The aim of the present paper is to associate with S a self-replicating multiple tiling of ăthe space, under the following assumption: the adjacency matrix of the trimmed minimal automaton recognizing L is primitive with a dominant eigenvalue being a Pisot unit. This construction generalizes the classical constructions performed for Rauzy fractals associated with Pisot substitutions [16], and for central tiles associated with a Pisot beta-numeration [23] .

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Akiyama, S.: Self affine tiling and Pisot numeration system. In: Number theory and its applications (Kyoto 1997). Dev. Math, vol. 2, pp. 7–17. Kluwer Acad. Publ, Dordrecht (1999)

    Google Scholar 

  2. Akiyama, S.: On the boundary of self affine tilings generated by Pisot numbers. J. Math. Soc. Japan 54, 283–308 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  3. Berthé, V., Rigo, M.: Odometers on regular languages. Theory Comput. Syst (to appear)

    Google Scholar 

  4. Berthé, V., Siegel, A.: Purely periodic expansions in the non-unit case (2004) (preprint)

    Google Scholar 

  5. Berthé, V., Siegel, A.: Tilings associated with beta-numeration and substitutions. Integers: Electronic Journal of Combinatorial Number Theory (to appear)

    Google Scholar 

  6. Dumont, J.-M., Thomas, A.: Systèmes de numération et fonctions fractales relatifs aux substitutions. Theoret. Comput. Sci. 65, 153–169 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  7. Dumont, J.-M., Thomas, A.: Digital sum moments and substitutions. Acta Arith. 64, 205–225 (1993)

    MATH  MathSciNet  Google Scholar 

  8. Frougny, C., Solomyak, B.: Finite beta-expansions. Ergodic Theory Dynam. Systems 12, 713–723 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  9. Grabner, P.J., Rigo, M.: Additive functions with respect to numeration systems on regular languages. Monatsh. Math. 139, 205–219 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  10. Lecomte, P.B.A., Rigo, M.: Numeration systems on a regular language. Theory Comput. Syst. 34, 27–44 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  11. Lecomte, P., Rigo, M.: On the representation of real numbers using regular languages. Theory Comput. Syst. 35, 13–38 (2002)

    MATH  MathSciNet  Google Scholar 

  12. Lecomte, P., Rigo, M.: Real numbers having ultimately periodic representations in abstract numeration systems. Inform. and Comput. 192, 57–83 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  13. Lothaire, M.: Algebraic Combinatorics on words. Cambridge University Press, Cambridge (2002)

    MATH  Google Scholar 

  14. Mauldin, R.D., Williams, S.C.: Hausdorff dimension in graph directed constructions. Trans. Amer. Math. Soc. 309, 811–829 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  15. Pytheas Fogg, N.: Substitutions in Dynamics, Arithmetics and Combinatorics. Lect. Notes in Math, vol. 1794. Springer, Berlin (2002)

    Book  MATH  Google Scholar 

  16. Rauzy, G.: Nombres algébriques et substitutions. Bull. Soc. Math. France 110, 147–178 (1982)

    MATH  MathSciNet  Google Scholar 

  17. Rigo, M.: Numeration systems on a regular language: arithmetic operations, recognizability and formal power series. Theoret. Comput. Sci. 269, 469–498 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  18. Rigo, M.: Construction of regular languages and recognizability of polynomials. Discrete Math. 254, 485–496 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  19. Rigo, M., Steiner, W.: Abstract β-expansions and ultimately periodic representations. J. Théor. Nombres Bordeaux 17, 283–299 (2005)

    MATH  MathSciNet  Google Scholar 

  20. Siegel, A.: Représentation des systèmes dynamiques substitutifs non unimodulaires. Ergodic Theory Dynam. Systems 23, 1247–1273 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  21. Sirvent, V., Wang, Y.: Self-affine tiling via substitution dynamical systems and Rauzy fractals. Pacific J. Math. 206, 465–485 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  22. Thomas, W.: Automata on infinite objects. In: Handbook of theoret. comput. sci., vol. B, pp. 133–191. Elsevier, Amsterdam (1990)

    Google Scholar 

  23. Thurston, W.P.: Groups, tilings and finite state automata, Lectures notes distributed in conjunction with the Colloquium Series. AMS Colloquium lectures (1989)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Berthé, V., Rigo, M. (2005). Abstract Numeration Systems and Tilings. In: Jȩdrzejowicz, J., Szepietowski, A. (eds) Mathematical Foundations of Computer Science 2005. MFCS 2005. Lecture Notes in Computer Science, vol 3618. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11549345_13

Download citation

  • DOI: https://doi.org/10.1007/11549345_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-28702-5

  • Online ISBN: 978-3-540-31867-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics