Advertisement

On the Complexity of Depth-2 Circuits with Threshold Gates

  • Kazuyuki Amano
  • Akira Maruoka
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3618)

Abstract

The paper investigates the complexity of depth-two circuits with threshold gates and consisting of two parts.

First, we develop a method for deriving a lower bound on the size of depth two circuits with a threshold gate at the top and a certain type of gates at the bottom. We apply the method for circuits with symmetric gates at the bottom that compute the “inner product mod 2”, and obtain a lower bound of 1.3638 n . Although our lower bound is slightly weaker than the best known lower bound of Ω(2 n/2/n), which was recently proved by Forster et al. [5,6], our method has unique features: A lower bound is obtained by solving a certain linear program, and solving larger linear programs yield higher lower bounds. We also discuss the generalization of the proposed method.

Second, we develop a simplified simulation of a depth-one threshold circuit with unbounded weights by a depth-two threshold circuit with small weights. Precisely, we give an explicit construction of depth-two circuits with small weights consist of Õn 5 gates that compute an arbitrary threshold function. We also give the construction of such circuits with O(n 3/log n) gates computing the COMPARISON and CARRY functions, and that with O(n 4/log n) gates computing the ADDITION function. These improve the previously known constructions on its size and simplicity.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alon, N., Bruck, J.: Explicit Constructions of Depth-2 Majority Circuits for Comparison and Addition. SIAM J. Disc. Math. 7(1), 1–8 (1994)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Amano, K., Maruoka, A.: Better Simulation of Exponential Weights by Polynomial Weights, Technical Report ECCC TR04-090 (2004)Google Scholar
  3. 3.
    Basu, S., Bhatnagar, N., Gopalan, P., Lipton, R.J.: Polynomials that Sign Represent Parity and Descartes Rule of Signs. In: Proc. 19th CCC, pp. 223–235 (2004)Google Scholar
  4. 4.
    Bohossian, V., Riedel, M.D., Bruck, J.: Trading Weight Size for Circuit Depth: An LT2 Circuit for Comparison, Tech. Report of PARADISE, ETR028 (1998), Available at http://www.paradise.caltech.edu/~riedel/research/lt2comp.html
  5. 5.
    Forster, J.: A Linear Lower Bound on the Unbounded Error Probabilistic Communication Complexity. J. Comput. Syst. Sci. 65, 612–625 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Forster, J., Krause, M., Lokam, S.V., Mubarakzjanov, R., Schmitt, N., Simon, H.U.: Relations between communication complexity, linear arrangements, and computational complexity. In: Hariharan, R., Mukund, M., Vinay, V. (eds.) FSTTCS 2001. LNCS, vol. 2245, pp. 171–182. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  7. 7.
    Goldmann, M.: On the Power of a Threshold Gate at the Top. Info. Proc. Let. 63, 287–293 (1997)CrossRefMathSciNetGoogle Scholar
  8. 8.
    Goldmann, M., Håstad, J., Razborov, A.A.: Majority Gates vs. General Weighted Threshold Gates. Computational Complexity 2, 277–300 (1992)zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Goldmann, M., Karpinski, M.: Simulating Threshold Circuits by Majority Circuits. SIAM J. Comput. 27(1), 230–246 (1998)zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Hajnal, A., Maass, W., Pudlák, P., Szegedy, M., Turán, G.: Threshold Circuits of Bounded Depth. J. Comput. Syst. Sci. 46(2), 129–154 (1993)zbMATHCrossRefGoogle Scholar
  11. 11.
    Hofmeister, T.: A Note on the Simulation of Exponential Threshold Weights. In: Cai, J.-Y., Wong, C.K. (eds.) COCOON 1996. LNCS, vol. 1090, pp. 136–141. Springer, Heidelberg (1996)Google Scholar
  12. 12.
    Krause, M., Pudlák, P.: On the Computational Power of Depth-2 Circuits with Threshold and Modulo Gates. In: Proc. 25th STOC, pp. 48–57 (1993)Google Scholar
  13. 13.
    Krause, M., Pudlák, P.: Computing Boolean Functions by Polynomials and Threshold Circuits. Comput. Complexity 7(4), 346–370 (1998)zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Krause, M., Wegener, I.: Circuit Complexity. In: Crama, Y., Hammer, P. (eds.) Boolean Functions, vol. II (2004)Google Scholar
  15. 15.
    Minsky, M., Papert, S.: Perceptrons (Expanded Ed.). MIT Press, Cambridge (1988)zbMATHGoogle Scholar
  16. 16.
    Muroga, S.: Threshold Logic and its Applications. John Wiley, New York (1971)zbMATHGoogle Scholar
  17. 17.
    O’Donnell, R., Servedio, R.: New Degree Bounds for Polynomial Threshold Functions. In: Proc. 35th STOC, pp. 325–334 (2003)Google Scholar
  18. 18.
    O’Donnell, R., Servedio, R.: Extremal Properties of Polynomial Threshold Functions. In: Proc. 18th CCC, pp. 3–12 (2003)Google Scholar
  19. 19.
    Parberry, I.: Circuit Complexity and Neural Networks. The MIT Press, London (1994)zbMATHGoogle Scholar
  20. 20.
    Razborov, A.A.: On Small Depth Threshold Circuits. In: Nurmi, O., Ukkonen, E. (eds.) SWAT 1992. LNCS, vol. 621, pp. 42–52. Springer, Heidelberg (1992)Google Scholar
  21. 21.
    Saks, M.: Slicing the Hypercube. Cambridge University Press, Cambridge (1993)Google Scholar
  22. 22.
    Siu, K.I., Bruck, J.: On the Power of Threshold Circuits with Small Weights. SIAM J. Disc. Math. 4(3), 423–435 (1991)zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Kazuyuki Amano
    • 1
  • Akira Maruoka
    • 1
  1. 1.GSISTohoku UniversitySendaiJapan

Personalised recommendations