Advertisement

Page Migration in Dynamic Networks

  • Marcin Bienkowski
  • Friedhelm Meyer auf der Heide
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3618)

Abstract

In the last couple of decades, network connected systems have gradually replaced centralized parallel computing machines. To provide smooth operation of network applications, the underlying system has to provide so-called basic services. One of the most crucial services is to provide a transparent access to data like variables, databases, memory pages, or .les, which are shared by the instances of programs running at nodes of the network.

Keywords

Dynamic Network Input Sequence Competitive Ratio Online Algorithm Deterministic Algorithm 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Achlioptas, D., Chrobak, M., Noga, J.: Competitive analysis of randomized paging algorithms. Theoretical Computer Science 234(1–2), 203–218 (2000)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Albers, S., Koga, H.: Page migration with limited local memory capacity. In: Proc. of the 4th Int. Workshop on Algorithms and Data Structures (WADS), pp. 147–158 (1995)Google Scholar
  3. 3.
    Awerbuch, B., Bartal, Y., Fiat, A.: Competitive distributed file allocation. In: Proc. of the 25th ACM Symp. on Theory of Computing (STOC), pp. 164–173 (1993)Google Scholar
  4. 4.
    Awerbuch, B., Bartal, Y., Fiat, A.: Heat & dump: Competitive distributed paging. In: Proc. of the 34th IEEE Symp. on Foundations of Computer Science (FOCS), pp. 22–31 (1993)Google Scholar
  5. 5.
    Awerbuch, B., Bartal, Y., Fiat, A.: Distributed paging for general networks. Journal of Algorithms 28(1), 67–104 (1998); Proc. of the 7th SODA, pp. 574–583 (1996)Google Scholar
  6. 6.
    Awerbuch, B., Brinkmann, A., Scheideler, C.: Anycasting in adversarial systems: routing and admission control. In: Proc. of the 30th Int. Colloq. on Automata, Languages and Programming (ICALP), pp. 1153–1168 (2003)Google Scholar
  7. 7.
    Bartal, Y.: Distributed paging. In: Dagstul Workshop on On-line Algorithms, pp. 97–117 (1996)Google Scholar
  8. 8.
    Bartal, Y., Charikar, M., Indyk, P.: On page migration and other relaxed task systems. Theoretical Computer Science 268(1), 43–66 (2001); Also appeared in Proc. of the 8th SODA, pp. 43–52, (1997)Google Scholar
  9. 9.
    Bartal, Y., Fiat, A., Rabani, Y.: Competitive algorithms for distributed data management. Journal of Computer and System Sciences 51(3), 341–358 (1995); Also appeared in Proc. of the 24nd STOC pp. 39–50 (1992)Google Scholar
  10. 10.
    Ben-David, S., Borodin, A., Karp, R.M., Tardos, G., Wigderson, A.: On the power of randomization in online algorithms. In: Proc. of the 22nd ACM Symp. on Theory of Computing (STOC), pp. 379–386 (1990)Google Scholar
  11. 11.
    Bienkowski, M.: Dynamic page migration with stochastic requests. In: Proc. of the 17th ACM Symp. on Parallelism in Algorithms and Architectures, SPAA (2005) (to appear)Google Scholar
  12. 12.
    Bienkowski, M., Byrka, J.: Bucket game with applications to set multicover and dynamic page migration. Unpublished manuscript (2005)Google Scholar
  13. 13.
    Bienkowski, M., Dynia, M., Korzeniowski, M.: Improved algorithms for dynamic page migration. In: Proc. of the 22nd Symp. on Theoretical Aspects of Computer Science (STACS), pp. 365–376 (2005)Google Scholar
  14. 14.
    Bienkowski, M., Korzeniowski, M.: Dynamic page migration under brownian motion. In: Cunha, J.C., Medeiros, P.D. (eds.) Euro-Par 2005. LNCS, vol. 3648, pp. 962–971. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  15. 15.
    Bienkowski, M., Korzeniowski, M., Meyer auf der Heide, F.: Fighting against two adversaries: Page migration in dynamic networks. In: Proc. of the 16th ACM Symp. on Parallelism in Algorithms and Architectures (SPAA), pp. 64–73 (2004)Google Scholar
  16. 16.
    Black, D.L., Sleator, D.D.: Competitive algorithms for replication and migration problems. Technical Report CMU-CS-89-201, Department of Computer Science, Carnegie-Mellon University (1989)Google Scholar
  17. 17.
    Borodin, A., El-Yaniv, R.: Online Computation and Competitive Analysis. Cambridge University Press, Cambridge (1998)zbMATHGoogle Scholar
  18. 18.
    Chrobak, M., Larmore, L.L., Reingold, N., Westbrook, J.: Page migration algorithms using work functions. In: Proc. of the 4th Int. Symp. on Algorithms and Computation (ISAAC), pp. 406–415 (1993)Google Scholar
  19. 19.
    Fiat, A., Karp, R.M., Luby, M., McGeoch, L.A., Sleator, D.D., Young, N.E.: Competitive paging algorithms. Journal of Algorithms 12(4), 685–699 (1991)zbMATHCrossRefGoogle Scholar
  20. 20.
    Harrelson, C., Hildrum, K., Rao, S.: A polynomial-time tree decomposition to minimize congestion. In: Proc. of the 15th ACM Symp. on Parallelism in Algorithms and Architectures (SPAA), pp. 34–43 (2003)Google Scholar
  21. 21.
    Krick, C., Meyer auf der Heide, F., Räcke, H., Vöcking, B., Westermann, M.: Data management in networks: Experimental evaluation of a provably good strategy. Theory of Computing Systems 2, 217–245 (2002); Also appeared in Proc. of the 11nd SPAA, pp. 165–174, (1999)Google Scholar
  22. 22.
    Lund, C., Reingold, N., Westbrook, J., Yan, D.C.K.: Competitive on-line algorithms for distributed data management. SIAM Journal on Computing 28(3), 1086–1111 (1999); Also appeared as On-Line Distributed Data Management in Proc. of the 2nd ESA, pp. 202–214 (1994)Google Scholar
  23. 23.
    Maggs, B.M., Meyer auf der Heide, F., Vöcking, B., Westermann, M.: Exploiting locality for data management in systems of limited bandwidth. In: Proc. of the 38th IEEE Symp. on Foundations of Computer Science (FOCS), pp. 284–293 (1997)Google Scholar
  24. 24.
    McGeoch, L.A., Sleator, D.D.: A strongly competitive randomized paging algorithm. Algorithmica 6(6), 816–825 (1991)zbMATHCrossRefMathSciNetGoogle Scholar
  25. 25.
    Meyer auf der Heide, F., Vöcking, B., Westermann, M.: Provably good and practical strategies for non-uniform data management in networks. In: Nešetřil, J. (ed.) ESA 1999. LNCS, vol. 1643, pp. 89–100. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  26. 26.
    Meyer auf der Heide, F., Vöcking, B., Westermann, M.: Caching in networks. In: Proc. of the 11th ACM-SIAM Symp. on Discrete Algorithms (SODA), pp. 430–439 (2000)Google Scholar
  27. 27.
    Räcke, H.: Minimizing congestion in general networks. In: Proc. of the 43rd IEEE Symp. on Foundations of Computer Science (FOCS), pp. 43–52 (2002)Google Scholar
  28. 28.
    Räcke, H.: Data management and routing in general networks. PhD thesis, Universität Paderborn (2003)Google Scholar
  29. 29.
    Rajaraman, R.: Topology control and routing in ad hoc networks: a survey. SIGACT News 33(2), 60–73 (2002)CrossRefGoogle Scholar
  30. 30.
    Rajesekaran, S., Pardalos, P.M., Reif, J.H., Rolim, J.: Handbook of Randomized Computing, vol. II. Kluwer Academic Publishers, Dordrecht (2001)Google Scholar
  31. 31.
    Rappaport, T.S.: Wireless Communications: Principles and Practices. Prentice-Hall, Englewood Cliffs (1996)Google Scholar
  32. 32.
    Rosenthal, J.S.: Convergence rates for Markov chains. SIAM Review 37(3), 387–405 (1995)zbMATHCrossRefMathSciNetGoogle Scholar
  33. 33.
    Scheideler, C.: Models and techniques for communication in dynamic networks. In: Proc. of the 19th Symp. on Theoretical Aspects of Computer Science (STACS), pp. 27–49 (2002)Google Scholar
  34. 34.
    Schindelhauer, C., Lukovszki, T., Rührup, S., Volbert, K.: Worst case mobility in ad hoc networks. In: Proc. of the 15th ACM Symp. on Parallelism in Algorithms and Architectures (SPAA), pp. 230–239 (2003)Google Scholar
  35. 35.
    Sleator, D.D., Tarjan, R.E.: Amortized efficiency of list update and paging rules. Communications of the ACM 28(2), 202–208 (1985)CrossRefMathSciNetGoogle Scholar
  36. 36.
    Westbrook, J.: Randomized algorithms for multiprocessor page migration. DIMACS Series in Discrete Mathematics and Theoretical Computer Science 7, 135–150 (1992)MathSciNetGoogle Scholar
  37. 37.
    Westermann, M.: Caching in Networks: Non-Uniform Algorithms and Memory Capacity Constraints. PhD thesis, Universität Paderborn (2000)Google Scholar
  38. 38.
    Yao, A.C.-C.: Probabilistic computation: towards a uniform measure of complexity. In: Proc. of the 18th IEEE Symp. on Foundations of Computer Science (FOCS), pp. 222–227 (1977)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Marcin Bienkowski
    • 1
  • Friedhelm Meyer auf der Heide
    • 2
  1. 1.International Graduate School of Dynamic Intelligent SystemsUniversity of PaderbornGermany
  2. 2.Heinz Nixdorf Institute and Computer Science DepartmentUniversity of PaderbornGermany

Personalised recommendations