Skip to main content

Intelligent Algorithms for Optical Track Audio Restoration

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 3642))

Abstract

The Unpredictability Measure computation algorithm applied to psychoacoustic model-based broadband noise attenuation is discussed. A learning decision algorithm based on a neural network is employed for determining audio signal useful components acting as maskers of the spectral components classified as noise. An iterative algorithm for calculating the sound masking pattern is presented. The routines for precise extraction of sinusoidal components from sound spectrum were examined, such as estimation of pitch variations in the optical track audio affected by parasitic frequency modulation. The results obtained employing proposed intelligent signal processing algorithms will be presented and discussed in the paper.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Brandenburg, K.: Second Generation Perceptual Audio Coding: The Hybrid Coder. In: Proceedings of the 90th Audio Eng. Soc. Convention, Montreux (1990) Preprint No. 2937

    Google Scholar 

  2. MPEG-4, International Standard ISO/IEC FCD 14496-3, Subpart 4 (1998)

    Google Scholar 

  3. Shlien, S.: Guide to MPEG-1 Audio Standard. IEEE Trans. Broadcasting 40, 206–218 (1994)

    Article  Google Scholar 

  4. Vaseghi, S.: Advanced Sig. Proc. and Dig. Noise Reduct. Wiley&Teubner, N.York (1997)

    Google Scholar 

  5. Zwicker, E., Zwicker, T.: Audio Engineering and Psychoacoustics: Matching Signals to the Final Receiver, the Human Auditory System. J. of Audio Eng. Soc 39(3), 115–126 (1991)

    MathSciNet  Google Scholar 

  6. Beerends, J., Stemerdink, J.: A Perceptual Audio Quality Measure Based on a Psychoacoustic Sound Representation. J. of Audio Eng. Soc. 40(12), 963–978 (1992)

    Google Scholar 

  7. Czyzewski, A., Krolikowski, R.: Noise Reduction in Audio Signals Based on the Perceptual Coding Approach. In: Proceedings of the IEEE Workshop on Applications of Signal Processing to Audio and Acoustics, New Paltz, New York, October 1999, pp. 147–150 (1999)

    Google Scholar 

  8. Tsoukalas, D., et al.: Perceptual Filters for Audio Sig. Enh. J. of Audio. Eng. Soc. 45(1/2), 22–36 (1997)

    Google Scholar 

  9. Humes, L.: Models of the Additivity of Masking. J. Ac. Soc. Of Am. 85, 1285–1294 (1989)

    Article  Google Scholar 

  10. Krolikowski, R., Czyzewski, A.: Noise Reduction in Acoustic Signals Using the Perceptual Coding. In: 137th Meeting, Acoust. Soc. Of Am., Berlin, Germany, CD-Preprint (1998)

    Google Scholar 

  11. Czyzewski, A., Dziubinski, M.: Noise Reduction in Audio Employing Spectral Unpredictability Measure and Neural Net. In: Negoita, M.G., Howlett, R.J., Jain, L.C. (eds.) KES 2004. LNCS (LNAI), vol. 3213, pp. 743–749. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  12. McAulay, J., Quatieri, T.F.: Speech analysis/synthesis based on a sinusoidal representation. IEEE Trans. on Acoustics, Speech, and Signal Processing 34(4), 744–754 (1986)

    Article  Google Scholar 

  13. Godsill, J.S., Rayner, J.W.: The restoration of pitch variation defects in gramophone recordings. In: Proceedings of the IEEE Workshop on Applications of Signal Processing to Audio and Acoustics, New Paltz, New York (October 1993)

    Google Scholar 

  14. Godsill, J.S.: Recursive restoration of pitch variation defects in musical recordings. In: Proc. International Conference on Acoustics, Speech, and Signal Processing, Adelaide, April, vol. 2, pp. 233–236 (1994)

    Google Scholar 

  15. Walmsley, P.J., Godsill, S.J., Rayner, P.J.W.: Polyphonic pitch tracking using joint Bayesian estimation of multiple frame parameters. In: Proc. 1999 IEEE Workshop on Applications of Signal Processing to Audio and Acoustics, New Paltz, New York (October 1999)

    Google Scholar 

  16. Czyzewski, A., et al.: Wow detection and compensation employing spectral processing of audio. 117 Audio Engineering Society Convention, Convention Paper 6212, October, San Francisco (2004)

    Google Scholar 

  17. Nichols, J.: An interactive pitch defect correction system for archival audio. In: AES 20th International Conference, October, Budapest (2001)

    Google Scholar 

  18. Serra, X.: Musical Sound Modeling with Sinusoids plus Noise. In: Pope, S., Picalli, A., De Poli, G., Roads, C. (eds.) Musical Signal Processing, Swets & Zeitlinger Publishers (1997)

    Google Scholar 

  19. Rodet, X.: Musical Sound Signal Analysis/Synthesis: Sinusoidal + Residual and Elementary Waveform Models. In: Proc. IEEE Symp. Time-Frequency and Time-Scale Analysis (1997)

    Google Scholar 

  20. Lagrange, M., Marchand, S., Rault, J.B.: Sinusoidal parameter extraction and component selection in a non-stationary model. In: Proc. of the 5th Int. Conference on Digital Audio Effects, Hamburg (September 2002)

    Google Scholar 

  21. Masri, P.: Computer Modeling of Sound for Transformation and Synthesis of Musical Signals, PhD thesis, University of Bristol (1996)

    Google Scholar 

  22. Auger, F., Flandrin, P.: Improving the readability of time-frequency and time-scale representations by the reassignment method. IEEE Trans. on Signal Processing 43(5), 1068–1089 (1995)

    Article  Google Scholar 

  23. Czyzewski, A., et al.: New Algorithms for Wow and Flutter Detection and Compensation in Audio. Paper to be presented (material submitted to pre-printing) for the 118th Audio Engineering Society Conv., May 2005, Barcelona (2005)

    Google Scholar 

  24. Ifeachor, E., Jervis, B.: Digital Signal Processing. A Practical Approach. Addison-Wesley Publishing Company, Reading (1993)

    Google Scholar 

  25. Kalman, R.: A New Approach to Linear Filtering and Prediction Problems. Trans. of the ASME. J. of Basing Engineering 82, 34–35 (1960)

    Google Scholar 

  26. Moghaddamjoo, A., Kirlin, L.: Robust Kalman Filtering with Unknown Inputs. IEEE Trans. on Acoustics, Speech, and Signal Processing 37(8), 1166–1175 (1989)

    Article  MATH  Google Scholar 

  27. Vaseghi, S., Frayling-Cork, R.: Restoration of Old Gramophone Recordings. J. of Audio Eng. Soc. 40(10), 791–800 (1997)

    Google Scholar 

  28. Widrow, B., Stearns, S.: Adaptive Signal Processing. Prentice-Hall Intl. Inc, New Jersey (1985)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Czyzewski, A., Dziubinski, M., Litwic, L., Maziewski, P. (2005). Intelligent Algorithms for Optical Track Audio Restoration. In: Ślęzak, D., Yao, J., Peters, J.F., Ziarko, W., Hu, X. (eds) Rough Sets, Fuzzy Sets, Data Mining, and Granular Computing. RSFDGrC 2005. Lecture Notes in Computer Science(), vol 3642. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11548706_30

Download citation

  • DOI: https://doi.org/10.1007/11548706_30

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-28660-8

  • Online ISBN: 978-3-540-31824-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics