Skip to main content

The Category Theoretic Solution of Recursive Program Schemes

  • Conference paper
Algebra and Coalgebra in Computer Science (CALCO 2005)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3629))

Included in the following conference series:

Abstract

This paper provides a general account of the notion of recursive program schemes, their uninterpreted and interpreted solutions, and related concepts. It can be regarded as the category-theoretic version of the classical area of algebraic semantics. The overall assumptions needed are small indeed: working only in categories with “enough final coalgebras” we show how to formulate, solve, and study recursive program schemes. Our general theory is algebraic and so avoids using ordered, or metric structures. Our work generalizes the previous approaches which do use this extra structure by isolating the key concepts needed to study recursion, e. g., substitution in infinite trees, including second-order substitution. As special cases of our interpreted solutions we obtain the usual denotational semantics using complete partial orders, and the one using complete metric spaces. Our theory also encompasses implicitly defined objects which are not usually taken to be related to recursive program schemes at all. For example, the classical Cantor two-thirds set falls out as an interpreted solution (in our sense) of a recursive program scheme. In this short version of our paper we can only sketch some proofs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aczel, P., Adámek, J., Milius, S., Velebil, J.: Infinite Trees and Completely Iterative Theories: A Coalgebraic View. Theoret. Comput. Sci. 300, 1–45 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  2. Adámek, J.: On a Description of Terminal Coalgebras and Iterative Theories. Electron. Notes Theor. Comput. Sci. 82(1) (2003)

    Google Scholar 

  3. Adámek, J., Milius, S., Velebil, J.: Free Iterative Theories: A Coalgebraic View. Math. Structures Comput. Sci. 13, 259–320 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  4. Adámek, J., Milius, S., Velebil, J.: From Iterative Algebras to Iterative Theories. Electron. Notes Theor. Comput. Sci. 106, 3–24 (2004); full version submitted and available at the URL, http://www.iti.cs.tu-bs.de/~milius

  5. Adámek, J., Milius, S., Velebil, J.: Elgot Algebras. Electron. Notes Theor. Comput. Sci., available at the URL, http://www.iti.cs.tu-bs.de/~milius (to appear)

  6. Adámek, J., Porst, H.E.: On tree coalgebras and coalgebra presentations. Theoret. Comput. Sci. 311, 257–283 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  7. Adámek, J., Reitermann, J.: Banach’s Fixed-Point Theorem as a Base for Data-Type Equations. Appl. Categ. Structures 2, 77–90 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  8. Adámek, J., Trnková, V.: Automata and Algebras in Categories. Kluwer Academic Publishers, Dordrecht (1990)

    MATH  Google Scholar 

  9. America, P., Rutten, J.: Solving Reflexive Domain Equations in a Category of Complete Metric Spaces. J. Comput. System Sci. 39, 343–375 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  10. Arnold, A., Nivat, M.: The metric space of infinite trees. Fund. Inform. III(4), 445–476 (1980)

    MathSciNet  Google Scholar 

  11. Barnsley, M.F.: Fractals everywhere. Academic Press, London (1988)

    MATH  Google Scholar 

  12. Barr, M.: Terminal coalgebras in well-founded set theory. Theoret. Comput. Sci. 114, 299–315 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  13. Barwise, J., Moss, L.S.: Vicious Circles. CSLI Publications, Stanford (1996)

    Google Scholar 

  14. Bloom, S.L.: All Solutions of a System of Recursion Equations in Infinite Trees and Other Contraction Theories. J. Comput. System Sci. 27, 225–255 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  15. Bloom, S.L., Ésik, Z.: Iteration Theories: The equational logic of iterative processes. EATCS Monographs on Theoretical Computer Science. Springer, Berlin (1993)

    MATH  Google Scholar 

  16. Courcelle, B.: Fundamental properties of infinite trees. Theoret. Comput. Sci. 25(2), 95–169 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  17. Elgot, C.C.: Monadic Computation and Iterative Algebraic Theories. In: Rose, H.E., Shepherdson, J.C. (eds.) Logic Colloquium 1973. North-Holland Publishers, Amsterdam (1975)

    Google Scholar 

  18. Elgot, C.C., Bloom, S.L., Tindell, R.: On the Algebraic Structure of Rooted Trees. J. Comput. System Sci. 16, 361–399 (1978)

    MathSciNet  Google Scholar 

  19. Ghani, N., Lüth, C., De Marchi, F.: Solving Algebraic Equations using Coalgebra. Theor. Inform. Appl. 37, 301–314 (2003)

    MATH  MathSciNet  Google Scholar 

  20. Guessarian, I.: Algebraic Semantics. LNCS, vol. 99. Springer, Heidelberg (1981)

    MATH  Google Scholar 

  21. Lambek, J.: A Fixpoint Theorem for Complete Categories. Math. Z. 103, 151–161 (1968)

    Article  MATH  MathSciNet  Google Scholar 

  22. Leinster, T.: General self-similarity: an overview, e-print math.DS/0411343 v1

    Google Scholar 

  23. Leinster, T.: A general theory of self-similarity I, e-print math.DS/041344

    Google Scholar 

  24. Leinster, T.: A general theory of self-similarity II, e-print math.DS/0411345

    Google Scholar 

  25. Matthes, R., Uustalu, T.: Substitution in Non-Wellfounded Syntax with Variable Binding. In: Gumm, H.P. (ed.) Electron. Notes Theor. Comput. Sci., vol. 82 (2003)

    Google Scholar 

  26. Milius, S.: Completely Iterative Algebras and Completely Iterative Monads. Inform. and Comput. 196, 1–41 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  27. Milius, S., Moss, L.S.: The Category Theoretic Solution of Recursive Program Schemes, full version, available at the URL http://www.iti.cs.tu-bs.de/milius

  28. Moss, L.S.: Parametric Corecursion. Theoret. Comput. Sci. 260(1–2), 139–163 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  29. Moss, L.S.: The Coalgebraic Treatment of Second-Order Substitution and Uninterpreted Recursive Program Schemes, preprint (2002)

    Google Scholar 

  30. Worrell, J.: On the Final Sequence of a Finitary Set Functor. Theoret. Comput. Sci. (accepted for publication)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Milius, S., Moss, L.S. (2005). The Category Theoretic Solution of Recursive Program Schemes. In: Fiadeiro, J.L., Harman, N., Roggenbach, M., Rutten, J. (eds) Algebra and Coalgebra in Computer Science. CALCO 2005. Lecture Notes in Computer Science, vol 3629. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11548133_19

Download citation

  • DOI: https://doi.org/10.1007/11548133_19

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-28620-2

  • Online ISBN: 978-3-540-31876-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics