Advertisement

Relation-Collapse: An Optimisation Technique for the Similarity Algebra \(\mathcal{SA}\)

  • Thomas Herstel
  • Ingo Schmitt
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3631)

Abstract

Query systems of multimedia database systems should support similarity queries as well as user preferences like query term weighting. The graphical query language WS-QBE integrates these concepts and is a user-friendly query language. For evaluation purposes WS-QBE queries are translated into similarity algebra \(\mathcal{SA}\) expressions. Expressions produced by the generation algorithm are very complex and thus need simplification and optimisation. One technique aiming at expression simplification is the relation-collapse technique. This technique, which is focus of this work, drastically reduces the number of basis relation scans and thus promises a more efficient query evaluation. Further, we discuss employing special, efficient implementations for algebra operations.

Keywords

Query Processing Query Language Relational Algebra Query Term Query Evaluation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Balko, S., Schmitt, I., Saake, G.: The Active Vertice Method: A Performant Filtering Approach to High-Dimensional Indexing. Data and Knowledge Engineering 51(3), 369–397 (2004)CrossRefGoogle Scholar
  2. 2.
    Codd, E.F.: A Relational Model of Data for Large Shared Data Banks. Communications of the ACM 13(6), 377–387 (1970)zbMATHCrossRefGoogle Scholar
  3. 3.
    Codd, E.F.: A Database Sublanguage Founded on the Relational Calculus. In: ACM SIGFIDET Workshop on Data Description, Access and Control, pp. 35–61 (1971)Google Scholar
  4. 4.
    Codd, E.F.: Relational Completeness of Data Base Sublanguages. In: Rustin, R. (ed.) Data Base Systems, vol. 6, pp. 65–98. Prentice Hall, Englewood Cliffs (1972)Google Scholar
  5. 5.
    Codd, E.F.: Relational Database: A Practical Foundation for Productivity. Communications of the ACM 25(2), 109–117 (1982)CrossRefGoogle Scholar
  6. 6.
    Date, C.J.: An Introduction to Database Systems, 8th edn. Addison-Wesley, Reading (2003)zbMATHGoogle Scholar
  7. 7.
    Elmasri, R., Navathe, S.B.: Fundamentals of Database Systems, 4th edn. Benjamin/Cummings, Redwood City (2004)zbMATHGoogle Scholar
  8. 8.
    Fagin, R., Lotem, A., Naor, M.: Optimal aggregation algorithms for middleware. Journal of Computer and System Sciences 66(4), 614–656 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Fagin, R., Wimmers, E.L.: A Formula for Incorporating Weights into Scoring Rules. Special Issue of Theoretical Computer Science (2000)Google Scholar
  10. 10.
    Graefe, G.: Query Evaluation Techniques For Large Databases. ACM Computing Surveys 25(2), 73–170 (1993)CrossRefGoogle Scholar
  11. 11.
    Güntzer, U., Balke, W.T., Kießling, W.: Optimizing Multi-Feature Queries for Image Databases. In: El Abbadi, A., Brodie, M.L., Chakravarthy, S., Dayal, U., Kamel, N., Schlageter, G., Whang, K.-Y. (eds.) VLDB 2000, Proceedings of 26th International Conference on Very Large Data Bases, Cairo, Egypt, September 10-14, pp. 419–428. Morgan Kaufmann, San Francisco (2000)Google Scholar
  12. 12.
    Henrich, A., Robbert, G.: Ein Ansatz zur Übertragung von Rangordnungen bei der Suche auf strukturierten Daten. In: Weikum, G., Schöning, H., Rahm, E. (eds.) Datenbanksysteme in Business, Technologie und Web, BTW 2003, 10. GI-Fachtagung, Leipzig. Lecture Notes in Informatics (LNI), vol. P-26, pp. 167–186. Gesellschaft für Informatik, Bonn (2003)Google Scholar
  13. 13.
    Herstel, T., Schmitt, I.: Optimierung von Ausdrücken der Ähnlichkeitsalgebra SA. In: Dadam, P., Reichert, M. (eds.) INFORMATIK 2004 - Informatik verbindet – Beiträge der 34. Jahrestagung der Gesellschaft für Informatik e.V (GI), Band 2, Ulm, Germany, September 20-24, 2004. Lecture Notes in Informatics (LNI), vol. P-51, pp. 49–53. Gesellschaft für Informatik, Köllen Druck+Verlag GmbH, Bonn (2004)Google Scholar
  14. 14.
    Ioannidis, Y.E.: Query optimization. ACM Computing Surveys 28(1), 121–123 (1996)CrossRefGoogle Scholar
  15. 15.
    Jarke, M., Koch, J.: Query Optimization in Database Systems. ACM Computing Surveys 16(2), 111–152 (1984)zbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Kifer, M., Bernstein, A., Lewis, P.M.: Database Systems: An Application-Oriented Approach, Introductory Version, 2nd edn. Addison-Wesley, Reading (2004)Google Scholar
  17. 17.
    Nepal, S., Ramakrishna, M.V.: Query Processing Issues in Image(multimedia) Databases. In: Kitsuregawa, M. (ed.) Proc. of the 15th IEEE Int. Conf. on Data Engineering, ICDE 1999, Sydney, Australia, pp. 22–29. IEEE Computer Society Press, Los Alamitos (1999)Google Scholar
  18. 18.
    Schmitt, I., Schulz, N.: Similarity Relational Calculus and its Reduction to a Similarity Algebra. In: Seipel, D., Turull-Torres, J.M. (eds.) FoIKS 2004. LNCS, vol. 2942, pp. 252–272. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  19. 19.
    Schmitt, I., Schulz, N., Herstel, T.: WS-QBE: A QBE-like Query Language for Complex Multimedia Queries. In: Chen, Y.-P.P. (ed.) Proceedings of the 11th International Multimedia Modelling Conference (MMM 2005), Melbourne, Australia, pp. 222–229. IEEE Computer Society Press, Los Alamitos (2005)CrossRefGoogle Scholar
  20. 20.
    Schulz, N.: Formulierung von Nutzerpräferenzen in Multimedia-Retrieval-Systemen. Dissertation, Otto-von-Guericke-Universität Magdeburg, Fakultät für Informatik (2004)Google Scholar
  21. 21.
    Schulz, N., Schmitt, I.: Relevanzwichtung in komplexen Ähnlichkeitsanfragen. In: Weikum, G., Schöning, H., Rahm, E. (eds.) Datenbanksysteme in Business, Technologie und Web, BTW 2003, 10. GI-Fachtagung, Leipzig, Februar 2003. Lecture Notes in Informatics (LNI), vol. P-26, pp. 187–196. Gesellschaft für Informatik (2003)Google Scholar
  22. 22.
    Weber, R., Schek, H.J., Blott, S.: A Quantitative Analysis and Performance Study for Similarity-Search Methods in High-Dimensional Spaces. In: Gupta, A., Shmueli, O., Widom, J. (eds.) Proc. of the 24th Int. Conf. on Very Large Data Bases (VLDB 1998), Ney York City, August 24–27, pp. 194–205. Morgan Kaufmann Publishers, San Francisco (1998)Google Scholar
  23. 23.
    Yu, C.T., Meng, W.: Principles of Database Query Processing for Advanced Applications. Morgan Kaufmann Publishers, San Francisko (1998)Google Scholar
  24. 24.
    Zadeh, L.A.: Fuzzy Logic. IEEE Computer 21(4), 83–93 (1988)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Thomas Herstel
    • 1
  • Ingo Schmitt
    • 1
  1. 1.Fakultät für InformatikUniversität MagdeburgMagdeburg

Personalised recommendations