Long-Term Temporal Data Representation of Personal Health Data

  • Tore Mallaug
  • Kjell Bratbergsengen
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3631)


The demand for timely, accurate personal health data is continuously growing. The increasing volume of generated health data from different sources creates new needs for a national, or international, future intergraded personal electronic health record (EHR). The database plays an important role in such a future health system. All kinds of personal health data must be stored and represented for a very long-term access. For this purpose we are working on a temporal object model in order to represent different versions of health data content, schemas and ontologies. Mappings between versions of these concepts are used for a temporal search in the stored data. In this paper we are introducing the use and purpose of the temporal model related to the examples of data and schema updates. A contribution of this work is to solve the EHR-case by using solutions from temporal databases, schema versioning and ontologies.


Postal Code Electronic Health Record Time Stamp Data Content Mapping Rule 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Dick, R.S., Steen, E.B., Detmer, D.E. (eds.): The Computer-Based Patient Record - An Essential Technology for Health Care, Revised ed., Institute Of Medicine. National Academy Press, Washington DC (1997)Google Scholar
  2. 2.
    Fagan, L.M., Shortliffe, E.H.: The Future of Computer Applications in Health Care. In: Medical Informatics - Computer Applications In Health Care and Biomedicine, ch. 20. Springer, Heidelberg (2001)Google Scholar
  3. 3.
    Office of Health and the Information Highway Health Canada. Canada Health Infoway: Paths to Better Health. Final Report of the Advisory Council on Health Infrastructure (February 1999),
  4. 4.
    Waegemann, C.P.: The five levels of electronic health records. M.D. Computing 13(3) (1996)Google Scholar
  5. 5.
    van Bemmel, J.H., Musen, M.A. (eds.): Handbook of Medical Informatics. Springer, Heidelberg (1997)Google Scholar
  6. 6.
    Berner, et al.: Will the Wave Finally Break? A Brief View of the Adoption of Electronic Medical Records in the United States. Journal of the American Medical Informatics Association 12(1) (2005)Google Scholar
  7. 7.
    Grimson, J.: Delivering the electronic healthcare record for the 21st century. International Journal of Medical Informatics 64 (2001)Google Scholar
  8. 8.
    Tsiknakis, M., Katehakis, D., Orphanoudakis, S.C.: A health information infrastructure enabling secure access to the life-long multimedia electronic health record. In: CARS 2004. International Congress Series, vol. 1268. Elsevier, Amsterdam (2004)Google Scholar
  9. 9.
    Katehakis, D.G., Sfakianakis, S., Tsiknakis, M., Orphanoudakis, S.C.: An Infrastructure for Integrated Electronic Health Record Services: The Role of XML (Extensible Markup Language). The Journal of Medical Internet Research 3 (2001),
  10. 10.
  11. 11.
    Ferraiolo, D.F., et al.: Proposed NIST standard for role-based access control. ACM Transactions on Information and System Security 4 (2001)Google Scholar
  12. 12.
    Jensen, et al.: A consensus glossery of temporal database concepts. SIGMOD record 23(1) (1994)Google Scholar
  13. 13.
    Snodgrass, R.: Temporal Databases. In: Frank, A.U., Formentini, U., Campari, I. (eds.) GIS 1992. LNCS, vol. 639. Springer, Heidelberg (1992)Google Scholar
  14. 14.
    Clifford, J., Dyreson, C., Isakowitz, T., Jensen, C.S., Snodgrass, R.T.: On the Semantics of ”now” in Databases. ACM Transactions on Database Systems 22(2) (1997)Google Scholar
  15. 15.
    Snodgrass, R.: The Temporal Query Language TQuel. ACM Transactions on Database Systems 12(2) (1987)Google Scholar
  16. 16.
    Roddick, J.F.: A survey of schema versioning issues for database systems. Information and Software Technology 37(7) (1995)Google Scholar
  17. 17.
    Rahm, E., Bernstein, P.A.: A survey of approaches to automatic schema matching. The VLDB Journal 10 (2001)Google Scholar
  18. 18.
    Kalinichenko, L.A.: Integration of Heterogeneous Semistructured Data Models in the Canonical one,
  19. 19.
    Prakash, N., Srivastava, S.: Engineering Schema Transformation Methods. In: EMSISE (2003)Google Scholar
  20. 20.
    Noy, N.F., Musen, M.A.: Ontology Versioning as an Element of an Ontology-Evolution Framework. IEEE Intelligent Systems (2003)Google Scholar
  21. 21.
    Hakimpour, F., Geppert, A.: Ontologies: an Approach to Resolve Semantic Heterogeneity in Databases,
  22. 22.
    Nørvåg, K.: VAGABOND The Design and Analysis of a Temporal Object Database Management System, Dr. ing. thesis, Norwegian University of Science and Technology, ISBN 82-7984-097-4Google Scholar
  23. 23.
    Wei, H.-C., Elmasri, R.: Study and Comparison of Schema Versioning and Data Conversion Techniques for Bi-temporal Databases. In: Sixth International Workshop on Temporal Representation and Reasoning, Orlando, Florida (1999)Google Scholar
  24. 24.
    Sheth, A., Larson, J.: So far (schematically) yet so near (semantically). Interoperable Database Systems, DS-5 (1993)Google Scholar
  25. 25.
    Vestenicky, V.: Schema Integration as View Cooperation. Charles University, Prague (2003)Google Scholar
  26. 26.
    Gomez-Perez, A., Fernandez-Lopez, M., Corcho, O.: Ontological Engineering. Springer, Heidelberg (2004)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Tore Mallaug
    • 1
    • 2
  • Kjell Bratbergsengen
    • 2
  1. 1.Faculty of Informatics and e-LearningSør-Trøndelag University CollegeTrondheimNorway
  2. 2.Department of Computer and Information ScienceNorwegian University of Science and TechnologyTrondheimNorway

Personalised recommendations