The Expressivity of Constraint Query Languages with Boolean Algebra Linear Cardinality Constraints

  • Peter Revesz
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3631)


Constraint query languages with Boolean algebra linear cardinality constraints were introduced recently and shown to be evaluable using a quantifier elimination method in [22]. However, the expressive power of constraint query languages with linear cardinality constraints is still poorly understood in comparison with other cases of constraint query languages. This paper makes several contributions to the analysis of their expressive power. Several problems that were previously provably impossible to express even in FO+POLY are shown to be expressible using first-order query languages with linear cardinality constraints FO+BALC. We also show that all monadic Datalog queries are expressible in FO+BALC. Finally, we also show a new results for FO+LINEAR by expressing in it the problem of finding the time when two linearly moving point objects are closest to each other.


Boolean Algebra Query Language Maximal Clique Transitive Closure Expressive Power 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Afrati, F., Andronikos, T., Kavalieros, T.: On the expressiveness of query languages with linear constraints: Capturing desirable spatial properties. In: Gaede, V., Vianu, V., Brodsky, A., Srivastava, D., Günther, O., Wallace, M. (eds.) CP-WS 1996 and CDB 1997. LNCS, vol. 1191, pp. 105–115. Springer, Heidelberg (1996)Google Scholar
  2. 2.
    Basu, S.: New results on quantifier elimination over real closed fields and applications to constraint databases. Journal of the ACM 46(4), 537–555 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Benedikt, M., Dong, G., Libkin, L., Wong, L.: Relational expressive power of constraint query languages. Journal of the ACM 45(1), 1–34 (1998)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Cai, M., Keshwani, D., Revesz, P.: Parametric rectangles: A model for querying and animating spatiotemporal databases. In: Zaniolo, C., Grust, T., Scholl, M.H., Lockemann, P.C. (eds.) EDBT 2000. LNCS, vol. 1777, pp. 430–440. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  5. 5.
    Caviness, B.F., Johnson, J.R. (eds.): Quantifier Elimination and Cylindrical Algebraic Decomposition. Springer, Heidelberg (1998)zbMATHGoogle Scholar
  6. 6.
    Chomicki, J., Haesevoets, S., Kuijpers, B., Revesz, P.: Classes of spatiotemporal objects and their closure properties. Annals of Mathematics and Artificial Intelligence 39(4), 431–461 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Chomicki, J., Revesz, P.: Constraint-based interoperability of spatiotemporal databases. Geoinformatica 3(3), 211–243 (1999)CrossRefGoogle Scholar
  8. 8.
    Chomicki, J., Revesz, P.: A geometric framework for specifying spatiotemporal objects. In: Proc. International Workshop on Time Representation and Reasoning, pp. 41–46 (1999)Google Scholar
  9. 9.
    Collins, G.E.: Quantifier elimination for real closed fields by cylindrical algebraic decomposition. In: Brakhage, H. (ed.) GI-Fachtagung 1975. LNCS, vol. 33, pp. 134–183. Springer, Heidelberg (1975)Google Scholar
  10. 10.
    Feferman, S., Vaught, R.L.: The first-order properties of products of algebraic systems. Fundamenta Mathematicae 47, 57–103 (1959)zbMATHMathSciNetGoogle Scholar
  11. 11.
    Güting, R.H., Böhlen, M.H., Erwig, M., Jenssen, C.C., Lorentzos, N.A., Schneider, M., Vazirgiannis, M.: A foundation for representing and querying moving objects. ACM Transactions on Database Systems 25 (2000)Google Scholar
  12. 12.
    Jaffar, J., Lassez, J.L.: Constraint logic programming. In: Proc. 14th ACM Symposium on Principles of Programming Languages, pp. 111–119 (1987)Google Scholar
  13. 13.
    Kanellakis, P.C., Kuper, G.M., Revesz, P.: Constraint query languages. Journal of Computer and System Sciences 51(1), 26–52 (1995)CrossRefMathSciNetGoogle Scholar
  14. 14.
    Kollios, G., Gunopulos, D., Tsotras, V.J.: On indexing mobile objects. In: Proc. ACM Symposium on Principles of Database Systems, pp. 261–272 (1999)Google Scholar
  15. 15.
    Kuijpers, B., Smits, M.: On expressing topological connectivity in spatial Datalog. In: Gaede, V., Vianu, V., Brodsky, A., Srivastava, D., Günther, O., Wallace, M. (eds.) CP-WS 1996 and CDB 1997. LNCS, vol. 1191, pp. 116–133. Springer, Heidelberg (1996)Google Scholar
  16. 16.
    Kuncak, V., Nguyen, H.H., Rinard, M.: An algorithm for deciding BAPA: Boolean algebra with Presburger arithmetic. In: Proc. 20th International Conference on Automated Deduction. LNCS, Springer, Heidelberg (2005)Google Scholar
  17. 17.
    Kuper, G.M., Libkin, L., Paredaens, J. (eds.): Constraint Databases. Springer, Heidelberg (2000)zbMATHGoogle Scholar
  18. 18.
    Reddy, C.R., Loveland, D.W.: Presburger arithmetic with bounded quantifier alternation. In: Proc. ACM Symp. on Theory of Comp, pp. 320–325 (1978)Google Scholar
  19. 19.
    Renegar, J.: On the computational complexity and geometry of the first-order theory of the reals. Journal of Symbolic Computation 13(3), 255–352 (1992)zbMATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Revesz, P.: Introduction to Constraint Databases. Springer, New York (2002)zbMATHGoogle Scholar
  21. 21.
    Revesz, P.: Cardinality constraint databases. In: Manuscript submitted to 23rd ACM Symposium on Principles of Database Systems (2003)Google Scholar
  22. 22.
    Revesz, P.: Quantifier-elimination for the first-order theory of Boolean algebras with linear cardinality constraints. In: Benczúr, A.A., Demetrovics, J., Gottlob, G. (eds.) ADBIS 2004. LNCS, vol. 3255, pp. 1–21. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  23. 23.
    Revesz, P., Cai, M.: Efficient querying of periodic spatio-temporal databases. Annals of Mathematics and Artificial Intelligence 36(4), 437–457 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  24. 24.
    Saltenis, S., Jensen, C.S., Leutenegger, S.T., Lopez, M.A.: Indexing the positions of continuously moving objects. In: Proc. ACM SIGMOD International Conference on Management of Data, pp. 331–342 (2000)Google Scholar
  25. 25.
    Tarski, A.: A Decision Method for Elementary Algebra and Geometry. University of California Press, Berkeley (1951)zbMATHGoogle Scholar
  26. 26.
    Wolfson, O., Sistla, A., Xu, B., Zhou, J., Chamberlain, S.: DOMINO: Databases for moving objects tracking. In: Proc. ACM SIGMOD International Conference on Management of Data, pp. 547–549 (1999)Google Scholar
  27. 27.
    Zarba, C.G.: A quantifier elimination algorithm for a fragment of set theory involving the cardinality operator. In: 18th Int. Workshop on Unification (2004)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Peter Revesz
    • 1
  1. 1.Department of Computer Science and EngineeringUniversity of Nebraska-LincolnLincolnUSA

Personalised recommendations