Note on Formal Analogical Reasoning in the Juridical Context

  • Matthias Baaz
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3634)


This note describes a formal rule for analogical reasoning in the legal context. The rule derives first order sentences from partial decision descriptions. The construction follows the principle, that the acceptance of an incomplete argument induces the acceptance of the logically weakest assumptions, which complete it.


Analogical Reasoning Initial Sequent Legal Reasoning Initial Node Weak Precondition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Baaz, M., Quirchmayr, G.: Logic-based models of analogical reasoning. In: Expert Systems with Applications, vol. 4, pp. 369–378. Pergamon Press, Oxford (1992)Google Scholar
  2. 2.
    Baaz, M., Salzer, G.: Semi-unification and generalizations of a particularly simple form. In: Pacholski, L., Tiuryn, J. (eds.) CSL 1994. LNCS, vol. 933, pp. 106–120. Springer, Heidelberg (1995)CrossRefGoogle Scholar
  3. 3.
    Baaz, M., Zach, R.: Generalizing theorems in real closed fields. Ann. Pure Appl. Logic 75, 3–23 (1995)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Cross, R., Harris, J.W.: Precedent in English law, 4th edn. Claredon Law Series. Oxford University Press, Oxford (1991)Google Scholar
  5. 5.
    Euler, L.: Opera Omnia, ser. 1, vol. 14, 73–86, 138–155, 177–186 Google Scholar
  6. 6.
    Gericke, H.: Mathematik in Antike und Orient. Mathematik im Abendland. Fourier Verlag, Wiesbaden (1992)Google Scholar
  7. 7.
    Kant, I.: Critique of Pure Reason, trans. N. Kemp Smith, St Martins Press (1929) A133/B172Google Scholar
  8. 8.
    Kelsen, H.: Reine Rechtslehre. Verlag Österreich (2000) (reprinted from 2nd edition from 1960)Google Scholar
  9. 9.
    Klug, U.: Juristische Logik, 4th edn. Springer, Heidelberg (1982)Google Scholar
  10. 10.
    Krajicek, J., Pudlak, P.: The number of proof lines and the size of proofs in first order logic. Arch. Math. Log. 27, 69–84 (1988)zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Kreisel, G.: On analogies in contemporary mathematics, 1978 UNESCO lecture. In: Hahn, Sinacèur (eds.) Penser avec Aristote, Erês, pp. 399–408 (1991)Google Scholar
  12. 12.
    Orevkov, V.P.: Reconstruction of the proof from its scheme. In: 8th Sov. Conf. Math. Log. Novosibirsk, p. 133 (1984) (Russian abstract)Google Scholar
  13. 13.
    Polya, G.: Induction and analogy in mathematics. Mathematics and plausible reasoning, vol. I. Princeton University Press, Princeton (1954)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Matthias Baaz
    • 1
  1. 1.Technische Universität WienViennaAustria

Personalised recommendations