Skip to main content

Transfinite Extension of the Mu-Calculus

  • Conference paper
Computer Science Logic (CSL 2005)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3634))

Included in the following conference series:

Abstract

In [1] Bradfield found a link between finite differences formed by Σ\(^{\rm 0}_{\rm 2}\) sets and the mu-arithmetic introduced by Lubarski [7]. We extend this approach into the transfinite: in allowing countable disjunctions we show that this kind of extended mu-calculus matches neatly to the transfinite difference hierarchy of Σ\(^{\rm 0}_{\rm 2}\) sets. The difference hierarchy is intimately related to parity games. When passing to infinitely many priorities, it might not longer be true that there is a positional winning strategy. However, if such games are derived from the difference hierarchy, this property still holds true.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bradfield, J.: Fixpoints, Games and the Difference Hierarchy. Theoretical Informatics and Applications 37, 1–15 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  2. Bradfield, J., Stirling, C.: Modal Logics and mu-calculi: An Introduction. In: Bergstra, J., Ponse, A., Smolka, S. (eds.) Handbook of Process Algebra, pp. 293–329. Elsevier Science B.V., Amsterdam (2001)

    Chapter  Google Scholar 

  3. Duparc, J.: Wadge Hierarchy and Veblen Hierarchy, Part I: Borel sets of finite rank. Journal of Symbolic Logic 66, 56–86 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  4. Grädel, E., Walukiewicz, I.: Positional Determinacy of Games with Infinitely Many Priorities (manuscript)

    Google Scholar 

  5. Kechris, A.: Classical descriptive set theory. Springer, Heidelberg (1995)

    MATH  Google Scholar 

  6. Louveau, A.: Some results in the Wadge hierarchy of Borel sets. In: Kechris, A., Martin, D., Moschovakis, Y. (eds.) Cabal Seminar 79-81. Lecture notes in Mathematics, pp. 28–55. Springer, Heidelberg (1983)

    Chapter  Google Scholar 

  7. Lubarski, R.S.: μ-definable sets of integers. Journal of Symbolic Logic 58, 291–313 (1993)

    Article  MathSciNet  Google Scholar 

  8. Martin, D.: Borel determinacy. Annals of Mathematics 102, 336–371 (1975)

    Article  Google Scholar 

  9. Niwiński, D.: Fixed point characterisation of infinite behavior of finite state systems. Theoretical Computer Science 189, 1–69 (1997)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bradfield, J., Duparc, J., Quickert, S. (2005). Transfinite Extension of the Mu-Calculus. In: Ong, L. (eds) Computer Science Logic. CSL 2005. Lecture Notes in Computer Science, vol 3634. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11538363_27

Download citation

  • DOI: https://doi.org/10.1007/11538363_27

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-28231-0

  • Online ISBN: 978-3-540-31897-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics