Advertisement

The Modular Decomposition of Countable Graphs: Constructions in Monadic Second-Order Logic

  • Bruno Courcelle
  • Christian Delhommé
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3634)

Abstract

We show that the modular decomposition of a countable graph can be defined from this graph, given with an enumeration of its set of vertices, by formulas of Monadic Second-Order logic. A second main result is the definition of a representation of modular decompositions by a low degree relational structures, also constructible by Monadic Second-Order formulas.

Keywords

Binary Tree Strong Module Hasse Diagram Graph Operation Automatic Structure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Barthelmann, K.: When can an equational simple graph be generated by hyperedge replacement? In: Leivant, D. (ed.) LCC 1994. LNCS, vol. 960, pp. 543–552. Springer, Heidelberg (1995)Google Scholar
  2. 2.
    Blumensath, A., Grädel, E.: Finite presentations of infinite structures: Automata and interpretations. Theory of Computing Systems 37, 641–674 (2004)zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Caucal, D.: On the regular structure of prefix rewriting. Theoretical Computer Science 106, 61–86 (1992)CrossRefMathSciNetGoogle Scholar
  4. 4.
    Courcelle, B.: Fundamental properties of infinite trees. Theoretical Computer Science 25, 95–169 (1983)zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Courcelle, B.: Recursive applicative program schemes. In: Van Leeuwen, J. (ed.) Handbook of Theoretical Computer Science, vol. B, pp. 459–492. Elsevier, Amsterdam (1990)Google Scholar
  6. 6.
    Courcelle, B.: Monadic second-order graph transductions: A survey. Theoretical Computer Science 126, 53–75 (1994)zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Courcelle, B.: The expression of graph properties and graph transformations in monadic second-order logic. In: Rozenberg, G. (ed.) Handbook of graph grammars and computing by graph transformations. Foundations, vol. 1, pp. 313–400. World Scientific, Singapore (1997)CrossRefGoogle Scholar
  8. 8.
    Courcelle, B.: The monadic second-order logic of graphs X: Linear orderings. Theoretical Computer Science 160, 87–143 (1996)CrossRefMathSciNetGoogle Scholar
  9. 9.
    Courcelle, B.: The monadic second-order logic of graphs XIV: Uniformly sparse graphs and edge set quantifications. Theoretical Computer Science 299, 1–36 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Courcelle, B.: The monadic second-order logic of graphs XV: On a Conjecture by D. Seese. To appear in Journal of Applied Logic, see http://www.labri.fr/~courcell/ActSci.html
  11. 11.
    Courcelle, B., Delhommé, C.: The modular decomposition of countable graphs (2005), see http://www.labri.fr/~courcell/ActSci.html
  12. 12.
    Ehrenfeucht, A., Harju, T., Rozenberg, G.: Decomposition of infinite labeled 2- structures. In: Karhumäki, J., Rozenberg, G., Maurer, H.A. (eds.) Results and Trends in Theoretical Computer Science. LNCS, vol. 812, pp. 145–158. Springer, Heidelberg (1994)Google Scholar
  13. 13.
    Ehrenfeucht, A., Harju, T., Rozenberg, G.: The theory of 2-structures. In: A framework for decomposition and transformation of graphs, World Scientific Publishing Co., River Edge (1999)Google Scholar
  14. 14.
    Fraïssé, R.: Theory of relations, 2nd edn. Studies in logic, vol. 118. North-Holland, Amsterdam (1986) (Second edition, Elsevier, 2000)zbMATHGoogle Scholar
  15. 15.
    Kelly, D.: Comparability graphs. In: Rival, I. (ed.) Graphs and order, pp. 3–40. D. Reidel Pub. Co. (1985)Google Scholar
  16. 16.
    Khoussainov, B., Nerode, A.: Automatic presentations of structures. In: Leivant, D. (ed.) LCC 1994. LNCS, vol. 960, pp. 367–392. Springer, Heidelberg (1995)Google Scholar
  17. 17.
    Möhring, R., Radermacher, R.: Substitution decomposition of discrete structures and connections with combinatorial optimization. Annals Discrete Maths 19, 257–356 (1984)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Bruno Courcelle
    • 1
  • Christian Delhommé
    • 2
  1. 1.LaBRI CNRSUniversité Bordeaux 1 
  2. 2.ERMITUniversité de La Réunion 

Personalised recommendations